Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биохимическая регуляция экспрессии генов

    Подготовка третьего издания книги повлекла за собой основательный пересмотр и реорганизацию материала предыдущего издания. В настоящей книге он сгруппирован в четыре основных раздела. Раздел I посвящен структурным аспектам развития на разных уровнях организации, что создает основу для понимания биохимических и физиологических подходов к проблеме, которые составляют содержание последующих разделов. В разделе П рассмотрены основные классы фитогормонов и их роль в эндогенной регуляции развития. Материал этого раздела подвергся значительной переработке и реорганизации, а главы, посвященные биохимии и механизмам действия фитогормонов, значительно расширены. Раздел III, касающийся различных аспектов влияния внешних условий иа развитие, пополнен новыми данными, а глава о ростовых движениях практически написана заново. И наконец, в разделе IV мы обсуждаем более общие проблемы развития, в частности его регуляцию на молекулярном уровне. Поскольку развитие, по существу, представляет собой процесс, связанный с дифференциальной активностью генов, в начале главы мы даем краткий обзор современного состояния знаний о структуре генома растений и о регуляции экспрессии генов у эукариот, хотя пока еще нельзя прямо связать эту информацию с огромным материалом, полученным в области развития растений при использоваиии других подходов. Несмотря иа то, что каждый из четырех разделов книги вносит свой вклад в наше понимание развития, в настоящее время еще невозможно объединить эти разные стороны наших знаний в единое целое. Совершенно очевидно, что фитогормоны играют жизиеиио важную роль как в процессах роста и диффереицировки клеток и тканей, так и в ответных реакциях растений иа воздействие факторов окружающей среды, но до тех пор пока мы не выясним механизм их действия иа молекулярном и субклеточном уровнях, мы не сможем полностью понять их роль в развитии. Более того, хотя первостепенная роль гормонов в регуляции и координации роста не вызывает сомнений, степень участия гормонов в регуляции процессов днфференцировки пока не ясна, так как каждый из крупных классов гормонов имеет широкий [c.7]


    Возвращаясь к исходному примеру-фагу X, мы можем теперь отдать должное прозорливости первопроходцев, которые распознали в росте этого вируса, и прежде всего в его способности идти по двум путям развития, удобный для исследования пример регуляции экспрессии генов. Бактерии и их фаги быстро размножаются, благодаря этому регуляцию их генов можно изучать с помощью генетических и биохимических подходов гораздо более эффективно, чем регуляцию генов в клетках высших организмов. Теперь рассмотрим вкратце, что представляют собой гены и как они работают. [c.11]

    Специфические механизмы регуляции экспрессии генов удалось установить благодаря сочетанию генетического и биохимического анализа ряда генетических функций, таких, как способность утилизировать альтернативные источники углерода, синтезировать определенные аминокислоты и другие метаболиты. Как отмечалось в гл. 7 и 8, генетическое картирование мутаций, влияющих на определенную метаболическую цепь, свидетельствует о том, что вовлеченные в нее гены часто располагаются в геноме в виде кластеров. Группировка функционально связанных между собой генов в кластеры, транскрипция каждого из которых инициируется на общем промоторе, позволяет осуществлять координированный контроль экспрессии этих генов. Транскрипция кла- [c.169]

    В симбиозах азотфиксирующих микробов с фототрофными организмами осуществляется симбиогенное сопряжение двух фундаментальных биохимических процессов — азотфиксации и фотосинтеза. Однако было бы не совсем точным представлять симбиотическое взаимодействие как натуральный обмен N-метаболитов на фотосинтаты. В процессе взаимодействия многих растений с азотфиксирующими бактериями наблюдается весьма тесная структурно-функциональная интеграция партнеров, которая основана на перекрестной регуляции и координированной экспрессии бактериальных и растительных генов. Она может сопровождаться глубокой дифференцировкой клеток партнеров, а также установлением между ними тесных регуляторных отношений. [c.164]

    Обычно рассматривают Три типа переноса генов у бактерий. Первый тип — трансформация — это такой процесс, при котором ДНК одной бактерии — донора переходит в другую бактерию — реципиент. Реципиент-ная клетка, в которой происходит экспрессия генетических признаков донора, называется трансформантом. Второй тип трансдукция — это процесс генного переноса, при котором бактериальный вирус (бактериофаг), размножающийся в клетках бактериального штамма-до-нора, включает в себя часть генетической информации бактерии и после инфицирования другого, реципиент-ного, штамма вызывает иногда наследуемые изменения у последнего. Реципиентная клетка, которая таким путем приобретает признаки донора, называется трансдук-тантом. Третий тип переноса — кон ьюгацця — это процесс, при котором клетки бактериального штамма-доно-ра вступают в непосредственный механический контакт с клетками реципиентного штамма и передают последнему генетический материал. Реципиент, который получает этот материал, называется трансконъюгантом. Наряду с процессом мутирования генов трансформация, трансдукция и конъюгация играют важную роль в появлении новых типов бактерий. Эти процессы очень важны также потому, что они позволяют исследователям, занимающимся бактериальной генетикой, выяснять биохимические и генетические аспекты функционирования бактерий, устанавливать принципы строения, функционирования и регуляции генов, а также более сложных процессов синтеза макромолекул, роста и деления клеток. [c.65]


    Принимая во внимание все возрастающий объем биохимической информации, многие разделы пришлось заново написать или существенно переработать например, о структуре и функциях белков и нуклеиновых кислот, регуляции экспрессии генов, молекулярных механизмов биогенеза ДНК и РНК, биосинтеза белка, механизмах регуляции метаболизма и роли гормонрецепторной системы и вторичных внутриклеточных мессенджеров в передаче нервного и гуморального сигналов, механизмах ферментативного катализа, особенностях обмена веществ в нервной ткани (нейрохимия), печени, мышечной и соединительной тканях и др. [c.12]

    В настоящей книге впервые систематически излагаются основные сведения о клеточных рецепторах их структурной организации, особенностях строения функционально значимых доменов, молекулярной генетике клеточных рецепторов, биосинтезе и катаболизме. Большое внимание уделено функциональной роли клеточных рецепторов в регуляции биохимических процессов, в том числе транспорта в клетку метаболитов, клеточной пролиферации, экспрессии генов, регуляции, биосинтеза белка по типу обратной связи . Перечисленные проблемы в качестве составной части входят в учебные планы университетов и медико-биологических факультетов медицинских институтов по биохимии и биофизике или самостоятельного курса — биохимия мембран. [c.5]

    БИОХИМИЧЕСКАЯ РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ [c.385]

    В учебнике на современном научно-теоретическом уровне изложен материал по структурной и метаболической биохимии. Особое внимание уделено полифункциональности белков и их роли в обеспечении специфических биохимических процессов и физиологических функций организма, а также динамическим аспектам ферментативного катализа. Приведены новые данные о регуляции метаболизма и экспрессии генов, биохимии иммунитета, а также клеточной и генной инженерии. [c.2]

    Вместе с тем остается еще немало проблем, требующих изучения. К их числу относится выяснение механизмов регуляции и координашш процессов жизнедеятельности на начальных стадиях находятся, в частности, исследования по расшифровке механизмов регуляции экспрессии генов, с которыми связаны процессы роста и деления клеток, их дифференцировка, а при патологии—опухолевая трансформация. Весьма ограниченны сведения о механизмах клеточной секреции. Остается неясной природа многих наследственных заболеваний. Не удается пока сформулировать конструктивного представления о сложных биохимических процессах, лежащих в основе функционирования центральной нервной системы. [c.5]

    На первый взгляд кажется, что в такой массе мутантов и фенотипов невозможно разобраться. Однако большинство схем, объясняющих экспрессию генов, было получено именно на основании подобных генетических данных. (Лишь потом предсказанные взаимодействия молекул проверяли биохимическими методами и уточняли все подробности.) Среди генетических данных, приведенных в табл. 10-3, имеются три важные подсказки, помогающие построить всю схему регуляции. В том, что касается типа спаривания М, обнаружено следующее. У мутантов М1 происходит экспрессия как М-специфических, так и Р-специфических генов. Это позволяет предположить, что продукт гена М1 может быть репрессором Р-специфических генов. В клетках, принадлежащих к типу спаривания F, при мутации [c.417]


Смотреть страницы где упоминается термин Биохимическая регуляция экспрессии генов: [c.378]    [c.195]    [c.171]    [c.12]    [c.9]    [c.26]    [c.196]   
Смотреть главы в:

Сельскохозяйственная биотехнология Изд2 -> Биохимическая регуляция экспрессии генов




ПОИСК





Смотрите так же термины и статьи:

Регуляция

Регуляция генной экспрессии



© 2025 chem21.info Реклама на сайте