Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы функционирования белков

    БеЛки и пептиды занимают особое место среди биологически важных веществ. Они не имеют себе равных по многообразию и спектру выполняемых ими биологических функций и участвуют, по существу, во всех процессах жизнедеятельности. Среди них мы встречаем ферменты, гормоны, антибиотики, токсины, белки-рецепторы и белки-регуляторы белки образуют строительный материал тканей и органов, лежат в основе защитных систем живого организма (антитела, интерфероны и т. п.), являются ключевыми элементами всех биологических транспортных и энергетических систем. Несмотря на то что многие белки уже хорошо изучены, перед исследователем предстают новые неизведанные просторы мира белков, и в этом отношении надо говорить лишь о нашем вступлении в этот удивительный и загадочный мир. Если вы стремитесь найти новый белок, прослеживая его роль по определенной биологической функции, то сейчас все чаще и чаще вам приходится встречаться с белками новых типов, меняющими наши традиционные представления о свойствах белка и принципах проявления его активности. Это и мембранные белки, существующие и действующие в неполярных средах, и белки рецепторных систем, способные к скачкообразному изменению своей пространственной структуры и, наконец, огромные по размеру белки-ансамбли, с молекулярным весом, достигающим многих сотен тысяч. Все это ставит перед исследователем сложнейшие проблемы, заставляет его постоянно обновлять свой методический арсенал, а колоссальные темпы развития современной науки и стремительный прогресс в изучении живой материи обязывают его находить и идентифицировать эти белки точно и в кратчайшие сроки, отводя не так уж много времени для полного распознания всех уровней структурной организации белка. Это естественно, поскольку настоящее изучение белка, подступ к пониманию его функционирования, начинается лишь тогда, когда структура белка уже расшифрована. [c.3]


    Специфические белок-белковые и белково-нуклеиновые взаимодействия лежат в основе функционирования всех без исключения генетических систем. Не менее важную роль в данных процессах играют и взаимодействия между белками и низкомолекулярными соединениями. Поэтому исследование механизмов таких взаимодействий, а также идентификация молекулярных партнеров, участвующих в формировании функционирующих макромолекулярных комплексов, является важнейшей задачей молекулярной биологии. Грандиозность задачи привлекла в эту область большое количество исследователей и породила обилие разработок, направленных на ее решение. Одним из методических прорывов последнего времени в изучении белок-белковых взаимодействий было создание дрожжевой ди-гибридной системы, которая с тех пор широко используется для решения многих аналогичных проблем, в том числе и для отбора рекомбинантных белков, полученных методами белковой инженерии [117, 118]. [c.355]

    Прежде чем рассмотреть исследования Астбери, кратко остановимся на предложенной им классификации белков, в основу которой был положен структурный признак [11, 12]. По этому признаку все белки делятся на два больших класса фибриллярных и глобулярных белков. Первые имеют вытянутую, волокнистую структуру вторые -форму глобулы (во времена Астбери они назывались корпускулярными белками). Такое разделение отчасти согласуется со спецификой функционирования белков и растворимостью их в воде. Фибриллярные белки входят в состав кожи, соединительных тканей, хрящей, скелета, волос, рогов и т.д. Как правило, в обычных условиях они химически инертны, не растворяются в воде и выполняют структурную или защитную функцию. Глобулярные белки играют активную роль в метаболизме, участвуя во всех процессах жизнедеятельности организма. Многие глобулярные белки растворимы в воде. Четкой структурной или функциональной границы между двумя классами белков, однако, провести нельзя. Например, миозин (белок мышц), хотя и имеет волокнистое строение, тем не менее химически не инертен. Функция миозина связана с превращением химической энергии в механическую работу. Несмотря на значительную условность, предложенная Астбери и сохранившаяся до сих пор классификация белков по структурному признаку остается все еще целесообразной. Сама идея разделения белков в зависимости от топологии структуры хорошо согласуется с одной из задач молекулярной биологии, а именно с установлением связи между строением (в том числе пространственным) и функцией биологических молекул. У. Астбери были изучены структуры разнообразных фибриллярных белков [13, 14]. Оказалось, что эти белки по структурному признаку могут быть разделены на две конформационные группы. Первая группа, названная по начальным буквам входящих в нее белков группой к.т.е.Г., включает такие белки, как кератин (белок волос, шерсти, ногтей и т.д.), миозин (белок мышц), эпидермин (белок кожи) и фибриноген (белок плазмы крови). Во вторую группу фибриллярных белков (группа коллагена) входят белки сухожилий, соединительных тканей, хрящей и др. Белки каждой группы имеют близкие картины рентгеновской дифракции, что указывает на их конформационную аналогию. [c.11]


    Всегда есть вероятность того, что древняя система репликации была совершенно иной, и в силу своей чрезмерной топорности или недостаточной универсальности, в конце концов, уступила место современной. Подобную идею трудно опровергнуть. Нам, по крайней мере, следует научиться представлять, как мог бы осуществляться подобный переход от древней системы, какой бы она ни была, к современной, в основе которой находятся нуклеиновая кислота и белок. Было высказано предположение, что для этого могли бы подойти слоистые структуры глины, но нелегко представить особенности их функционирования, и до сих пор нет впечатляющих экспериментальных данных подобного поведения. [c.69]

    Особенности межмолекулярных взаимодействий в мембранах. Физические основы внутримембранных взаимодействий. Липид-липидные, белок-липидные и белок-белковые взаимодействия в мембранах, их роль в функционировании биомембран. Понятие об аннулярных липидах. [c.282]

    В большом числе случаев для функционирования белков и нуклеиновых кислот необходимо, чтобы несколько полимерных цепей были соединены в единый комплекс. В Случае чисто белковых образований такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Субъединичная структура белков часто фигурирует в научной литературе как четвертичная структура, т.е. как уровень организации, следующий за третичной структурой. Нуклеиновые кислоты с комплементарными последовательностями нуклеотидов образуют двуспиральные структуры. При определенных структурных особенностях могут образовываться и структуры, содержащие три цепи,— тре.хспиральные структуры. Наконец, многие функционально значимые образования содержат как белки, так и нуклеиновые кислоты такие образования называют нуклеопротеидами. В основе образования нуклеопротеидов лежат высокоспецифичные взаимодействия между соответствующими полипептидными и полинуклеотидными цепями, т.е. способность молекул биополимеров к взаимному узнаванию. [c.102]

    В современной литературе вопросам функционирования олигомерных ферментов уделяется большое внимание. Уже в работах Кошланда, на основе концепции конформационной подвижности белков [53], развитой в принцип индуцированного соответствия , предложена модель работы олигомерных ферментов [104]. При этом используется идея о глобальной передаче конформационных изменений путем межсубъединичных взаимодействий. Модель Кошланда и др. основана на следующих постулатах в отсутствие лиганда белок существует в одной конформации лиганд, связываясь с субъединицей белка, вызывает в ней конформационное изменение, которое может передаваться на соседнюю субъединицу. Для описания связывания необходимо вводить столько констант, сколько существует центров связывания. В некоторых случаях это усложняет интерпретацию наблюдаемых экспериментальных данных. Однако, в принципе, аксиоматика этой модели такова, что кинетика практически любых олигомерных ферментов, для которых справедливо допущение о квазиравновесном связывании субстрата , может быть описана на ее основе. В зависимости от количества субъединиц и схемы взаимодействия между ними, модель допускает спектр состояний как лишенных симметрии, так и имеющих симметрию более низкого порядка по сравнению с максимальной, наблюдаемой у свободного фермента. [c.105]

    А вот пример, касающийся функционирования факультативной компоненты генома. Умножение активно работающих генов - важный элемент современных гипотез о возможных путях направленной изменчивости. Наличие этого эффекта подтверждено тщательным экспериментом. Система, обеспечивающая такой эффект, тоже может рассматриваться как претендент на роль наследуемой единицы. Кстати, в молекулярной основе этой системы, нарушающей отчасти положение о ненаправленной изменчивости, лежит, вероятно, другой нарушитель -обрушивший центральную догму (ДНК РНК белок) процесс обратной транскрипции, переписьшания ДНК с РНК. Если ген работает интенсивно, на нем синтезируется много матричной РНК, некоторые молекулы этой РНК могут быть обратно переведены в ДНК. Фермент, который осуществляет перевод, продуцируется с помощью вирусных генов или некоторых прыгающих генетических элементов. Может, в этом и состоит их значение для организма в эволюции  [c.126]


Смотреть страницы где упоминается термин Основы функционирования белков: [c.171]    [c.49]    [c.488]    [c.434]    [c.326]   
Смотреть главы в:

Биохимия Краткий курс с упражнениями и задачами -> Основы функционирования белков




ПОИСК







© 2025 chem21.info Реклама на сайте