Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метаболические пути, определение

    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]


    Какие же гены оказываются полезными и входят в состав мобильных элементов Это не праздный вопрос, поскольку каждая бактериальная клетка хорошо приспособлена к своей среде обитания и не нуждается в генах, аналогичных тем, которые у нее уже есть и обеспечивают ее адаптацию к среде. С другой стороны, приспособление к совершенно новой среде обитания, по-видимому, требует относительно значительной перестройки генетического материала клетки, включающей, в частности, коадаптацию многих разных генов. Поэтому клетка может получить селективное преимущество за счет приобретения какого-либо гена (в составе транспозона) лишь в том случае, если этот ген сам по себе способен оказаться выгодным для бактерии в определенных условиях, т. е. именно такие гены выгодно иметь транспозонам в своем составе. Действительно, на транспозонах путешествуют гены устойчивости к различным бактериальным ядам, в том числе к тяжелым металлам и антибиотикам, гены дополнительных метаболических путей, позволяющие использовать, например, какой-нибудь необычный источник углерода, наконец гены некоторых токсинов, делающие бактерии патогенными и позволяющие им тем самым существенно изменить образ жизни. [c.124]

    Данная глава и вся остальная часть книги посвящены главным образом конкретным реакциям метаболических путей. Метаболические пути — это сложная сеть разветвленных и взаимозависимых последовательностей биохимических превращений. Пытаться запомнить все эти пути — задача довольно бессмысленная. Однако некоторые из главных метаболических последовательностей все же необходимо выучить и четко представлять себе их значение. Обе эти задачи будет легче решить, если сначала мы рассмотрим индивидуальные химические реакции, катализируемые ферментами, а затем сами метаболические пути. Это поможет нам понять саму логику объединения индивидуальных реакций в метаболические пути. Тем не менее, прежде чем перейти к осуществлению намеченного плана, целесообразно рассмотреть вкратце наиболее важные метаболические пути, что облегчит последующее обсуждение индивидуальных химических реакций, имеющих определенное биологическое значение. [c.81]

    До сих пор речь щла у нас главным бразом о центральных метаболических путях, т.е. о путях превращения основных пищевых веществ клетки-углеводов, жиров и белков. На этих центральных путях потоки -мeтaJбoлитoв довольно внущи-тельны. Например, в организме взрослого человека ежесуточно окисляется до СО2 и воды несколько сотен граммов глюкозы. Есть, однако, и другие метаболические пути со значительно меньшим потоком метаболитов ежесуточный синтез или распад измеряется здесь миллиграммами. Эти пути составляют так называемый вторичный метаболизм, роль которого состоит в образовании различных специализированных веществ, требующихся клеткам в малых количествах. К вторичным метаболическим путям принадлежит, например, биосинтез коферментов и гормонов, потому что эти соединения вырабатываются и используются только в следовых количествах. Сотни различных высокоспециализированных биомолекул, в том числе нуклеотиды, пигменты, токсины, антибиотики и алкалоиды, продуцируются у разных форм жизни на вторичных метаболических путях. Все эти продукты, разумеется, очень важны для тех организмов, которые их вырабатывают, и все они выполняют какие-то определенные биологические функции. Однако специализированные вторичные метаболические пути, ведупще к их синтезу, не во всех случаях хорошо изучены. В этой книге мы лишены возможности рассматривать эти вторичные метаболические пути, порой весьма сложные мы здесь займемся главным образом центральными, или первичными, путями метаболизма. [c.391]


    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Метаболизм включает в себя необозримое множество различных химических реакций. Многие из них организованы в сложные циклы, в которых иногда трудно разобраться. Однако имеются здесь и логика, и порядок. За небольшим исключением, метаболические пути складываются из последовательно идущих реакций, описанных в гл. 7, 8 и 10 (и подытоженных в табл. 9-1), и каждая такая цепь реакций организована для выполнения определенной химической задачи. [c.306]

    Цитохромы типа с могут способствовать выявлению эволюции метаболических путей. Цитохромы с вводят нас в обширную область прокариотов. В принципе структуры этих белков можно использовать для установления определенного порядка среди бактерий таким же образом, как митохондриальные цитохромы с были применены в таксономических целях к эукариотическим организмам. Первые попытки такой классификации бактерий уже сделаны [509, 571]. Однако, поскольку в бактериях может осуществляться переход межродового гена [507, 508], построение филогенетического дерева затрудняется генами, которые переходят из одной ветви в другую. [c.227]

    В процессе эволюции белков можно выделить тенденции к специализации и дифференциации. Специализированные белки выполняют одну и ту же функцию в разных организмах и могут использоваться для установления генеалогии организмов. Однако следует отметить, что специализация белков не направляет эволюцию организмов. Дифференциация белков — это процесс, ведущий к функциональному разнообразию гомологичных белков. Таким образом, исследование эволюции белков не только способствует проникновению в детали структурной организации белков, но также позволяет установить связи между белками, находящимися в совершенно различных частях метаболического пути. Таким образом, можно внести определенный порядок в огромный перечень существующих белков и вместе с тем выявить аспекты эволюции метаболических путей. Важным механизмом дифференциации белков является мультипликация и слияние генов. [c.242]

    Бактерии можно не только использовать как фабрики для синтеза белков типа рестриктаз, но и получать с их помощью новые продукты, изменяя метаболизм бактериальных клеток введением в них чужеродных генов или модификацией уже существующих. Можно создавать рекомбинантные микроорганизмы, способные синтезировать самые разные низкомолекулярные соединения Ь-аскорбиновую кислоту, краситель индиго, аминокислоты, антибиотики, мономерные единицы различных биополимеров. Общая стратегия при этом состоит во введении в организм хозяина специфических генов, клонированных в подходящем векторе, которые кодируют один или несколько ферментов, катализирующих не свойственные микроорганизму метаболические реакции или влияющих на осуществляемый им в норме биосинтез определенных соединений. По имеющимся данным, создание новых метаболических путей не является технически неосуществимым. Этот подход поможет создать необычные, более эффективные пути синтеза самых разных соединений. [c.272]

    Конструктивные и энергетические процессы протекают в клетке одновременно. У больщинства прокариот они тесно связаны между собой. Однако у некоторых прокариотных организмов можно выделить последовательности реакций, служащих только для получения энергии или только для биосинтеза. Связь между конструктивными и энергетическими процессами прокариот осуществляется по нескольким каналам. Основной из них — энергетический. Определенные реакции поставляют энергию, необходимую для биосинтезов и других клеточных энергозависимых функций. Биосинтетические реакции кроме энергии нуждаются часто в поступлении извне восстановителя в виде водорода (электронов), источником которого служат также реакции энергетического метаболизма. И наконец, тесная связь между энергетическими и конструктивными процессами проявляется в том, что определенные промежуточные этапы или метаболиты обоих путей могут быть одинаковыми (хотя направленность потоков реакций, относящихся к каждому из путей, различна). Это создает возможности для использования общих промежуточных продуктов в каждом из метаболических путей. Промежуточные соединения такой природы предложено называть амфиболитами, а промежуточные реакции, одинаковые для обоих потоков, — амфиболическими. [c.80]


    Наиболее быстрым, точным и тонким механизмом регуляции активности ферментов является регуляция, которой подвергается определенный тип ферментов, получивших название ал л остер и чески х. Эти ферменты, как правило, занимают ключевые позиции в обмене веществ, располагаясь в стратегических пунктах клеточного метаболизма — начале метаболических путей или местах разветвлений, где расходятся или сходятся несколько путей. [c.115]

    Свет в диапазоне от дальнего УФ до дальней красной области влияет на разнообразные жизненные функции (подвижность, циклы развития, синтез каротиноидов) не только фототрофных, но и хемотрофных прокариот. Фоторецепторами, запускающими или контролирующими определенные метаболические пути, служат разные типы молекул флавины, каротиноиды, порфирины. Солнечная радиация в диапазоне 220—300 нм, достигающая Земли, активно поглощается также молекулами белков и нуклеиновых кислот. Хотя повреждение негенетического материала может приводить к отрицательным эффектам, особенно при облучении клеток высокими дозами, при облучении более низкими дозами основной причиной инактивации клеток служит повреждение ДНК. [c.131]

    Для биосинтеза химических компонентов клеткам необходим также ряд соединений, содержащих азот, фосфор, серу, калий, магний и другие вещества, которые поступают в растение обычно через корни. У растений существует определенный метаболический путь использования СО2 в качестве единственного источника углерода при синтезе глюкозы. [c.22]

    Наследственные болезни чаще всего связаны с недостатком одного или нескольких ферментов в результате подавления их синтеза. Это приводит к нарушениям тех или иных обменных процессов и, как следствие, развитию различных заболеваний. Из-за отсутствия какого-либо фермента определенные звенья метаболических путей, состоящих из последовательно протекающих реакций, оказываются блокированными. При этом метаболиты, образованные до дефектного звена, накапливаются в патологических количествах, а метаболиты, синтез которых связан с последующими этапами, не образуются вовсе. Это вызывает развитие физиологически не обоснованных биохимических реакций, затрагивающих многие жизненно важные функции живого организма. Рассмотрим отдельные примеры. [c.88]

    Второй важный подход к выяснению метаболических путей связан с изучением мутантных организмов, не способных синтезировать данный фермент в активной форме. Такой дефект, если только он не является летальным, может проявиться в том, что у мутанта будет накапливаться и выводиться из организма субстрат дефектного фермента. Некоторые этапы обмена аминокислот удалось, например, выяснить, исследуя у людей в ю-жденные нарущения обмена, при которых в организме не вырабатывается определенный фермент (рис. 13-18). У человека такие генетические нарущения встречаются сравнительно редко и вследствие этого не могут служить объектом систематического изучения. Однако у микроорганизмов их можно вызвать искусственно, воздействуя на клетки различными мутагенными агентами (рентгеновскими лучами или определенными химическими соединениями), способными изменять структуру определенных генов в их ДНК. Полученные таким путем мутантные микроорганизмы, утратив-пше способность синтезировать тот или иной фермент, могут служить прекрасным орудием для изучения метаболизма. [c.392]

    На рис. 14-19 показано, как через эти различные нуклеозид- и дезоксинуклеозид-трифосфаты энергия и строительные блоки передаются на определенные метаболические пути, где они используются для биосинтеза липидов, белков и в первую очередь для биосинтеза ДНК и РНК. [c.434]

    Первый тип регуляции свойствен многим метаболическим путям. Как правило, одновременно регулируется синтез многих ферментов, относящихся к одному и тому же пути. Цель этой регуляции - обеспечить нужное соотношение между скоростью синтеза определенных ферментов и скоростью синтеза суммарного клеточного белка. Эта скорость определяется частотой транскрипции структурных генов. [c.472]

    ОПРЕДЕЛЕНИЕ МЕТАБОЛИЧЕСКИХ ПУТЕЙ [c.11]

    Определение метаболических путей [c.12]

    Важные метаболические пути, в которых участвуют пятиуглеродные пентозные сахара, называют либо пентозофосфатным и путями, либо фосфоглюконатным путем, либо гексозомонофосфатным шунтом. Исторически первые данные о существовании таких путей были получены в экспериментах Варбурга по окислению глюкозо-6-фосфата в 6-фосфоглюконат. Напомним, что при изучении именно этой реакции был открыт NADP+ (гл. 2, разд. 3). Многие годы это окисление считали ферментативной реакцией, лежащей вне каких-либо определенных метаболических путей. Вместе с тем существовало предположение, что эта реакция является частью альтернативного пути распада глюкозы. Это предположение укрепилось после того, как было обнаружено, что процесс дыхания в тканях продолжается в присутствии высоких концентраций ионов фтора — известных ингиби торов енолазной реакции, — способных почти полностью блокировать процесс гликолиза. В некоторых тканях (в частности, в печени) этот альтернативный путь дыхания оказы вается особенно активным. Теперь мы знаем, что пентозофосфатные пути многообразны и многоплановы. Они не только занимают существенное место в процессах катаболизма,, но при функционировании в обратном направлении восстановительный пентозофосфатный путь) являются ключевыми реакциями фотосинтеза, приводящими к образованию сахара [c.339]

    Известно много генетических болезней человека, при которых тот или иной фермент либо совсем неактивен, либо имеет какой-то дефект, затрагивающий его каталитическую или регуляторную функцию. При таких заболеваниях в полипептидных цепях дефектного фермента содержится одна или большее число неправильных аминокислот, появившихся в результате мутации участков ДНК, кодирующей этот фермент. Каталитическая активность фермента зависит не только от наличия определенных аминокислотных остатков в каталитическом и регуляторном центрах, но и от общей трехмерной структуры фермента. Поэтому замена одного аминокислотного остатка в каком-либо важном месте цепи может привести к изменению или даже к полной утрате каталитической активно сти фермента, подобно тому как замена всего лишь одного аминокислотного остатка в молекуле гемоглобина вьпы-вает появление серповидноклеточного гемоглобина с нарушенной функцией (разд. 8.18). Если генетически измененный фермент входит в состав ферментной системы, катализирующей ка-кой-нибудь центральный метаболический путь, то последствия такого изменения могут быть очень тяжелыми, вплоть до летальных нарушений метаболизма. [c.266]

    Метаболизм и метаболические пути. Как во время роста, так и в состоянии покоя вегетативные клетки нуждаются в постоянном притоке энергии. Живая клетка лредставля ет собой высокоорганизованную материю. Энергия необходима не только для создания такой организации, но и для ее поддержания. Эту энергию организм получает в процессе обмена веществ, или метаболизма, т.е. путем регулируемых превращений, которым различные вещества подвергаются внутри клеток. Источниками энергии служат питательные вещества, поступающие из внешней среды. В клетках эти вещества претерпевают ряд изменений в результате последовательных ферментативных реакций, образующих этапы определенных метаболических путей. Такие пути выполняют две главные функции они, во-первых, поставляют материалы-предшествен-ники для построения клеточных компонентов и, во-вторых, обеспечивают энергию для клеточных синтезов и других процессов, требующих затраты энергии. [c.214]

    Нормальное течение метаболических путей можно также нарушить введением в систему какого-то химического соединения, вступающего во взаимодействие с определенным метаболитом, но не блокирующего при этом ферментов, ответственных за образование этого метаболита. Так, бисульфит натрия используют в качестве ловушки для ацетальдегида, образующегося в процессе гликолиза гидроксиламин присоединяется к ацилкоферментам А во время их ферментативного синтеза, а семикарбазид служит ловушкой для а-кетокислот. Введение В систему таких агентов-ловушек может, конечно, привести к одновременному ингибированию некотфых ферментов, и наблюдаемый эффект будет тогда совершенно отличаться от ожидаемого. Так, уже упоминавшиеся карбонильные реагенты способны связываться с пиридоксаль-фосфатом, благодаря чему их можно использовать для ингибирования ферментов, коферментом которых служит пиридоксальфосфат. Точно так же при работе с неочищенными ферментными смесями или даже с целыми клетками нельзя быть [c.15]


Смотреть страницы где упоминается термин Метаболические пути, определение: [c.55]    [c.120]    [c.379]    [c.394]    [c.396]    [c.701]    [c.148]    [c.215]    [c.15]   
Основы биологической химии (1970) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболические пути

Метаболические яды



© 2025 chem21.info Реклама на сайте