Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргинин в синтезе креатина

    Что касается механизма образования креатина, то, как выяснилось в опытах с изотопами, синтез креатина в животном организме интимно связан с превращениями трех аминокислот аргинина, гликокола и метионина. [c.421]

    Но при процессах обмена часть циркулирующих в крови и находящихся в тканях незаменимых аминокислот постоянно используется не только для синтеза белков, но и для образования других биологически важных соединений. Так, например, из фенилаланина после окисления его в тирозин в щитовидной железе образуется важный гормон тироксин, в мозговом веществе надпочечника тирозин превращается в другой гормон — адреналин из аргинина получается креатин, входящий в состав мышц, метионин иг рает большую роль в процессах синтеза важнейших метилированных сое динений (холина и креатина, стр. 347) и т. д. Таким образом, часть неза менимых аминокислот постоянно извлекается из крови, и, следовательно остающиеся аминокислоты уже не могут быть полностью использованы для синтеза тканевого белка. Этим в значительной мере и можно объяснить тот факт, что аминокислоты, освобождающиеся в тканях при голодании в результате расщепления тканевых белков, не используются вновь орга- [c.325]


    Уже давно было известно, что введение больших количеств гликокола приводит к усиленному образованию креатива в организме. Равным образом нагрузка аргинином также способствовала синтезу креатина. Однако связь между этими явлениями долгое время оставалась неясной. [c.421]

    С помощью дейтерия и тяжелого азота Шенгеймером были выяснены пути образования и превращений креатина в организме. Путем введения в нищу животного разных аминокислот, меченных дейтерием в N1 , было установлено, что для образования креатина мышц нужны три из них. Глицин дает креатин с в аминогруппе (но не в амидиновой) аргинин доставляет амидиновую группу с в ней, а метионин вводит метильную группу, меченную дейтерием. На основании этих данных была установлена следующая схема синтеза креатина с промежуточным образованием гликоциамина, превращение которого в креатин также было доказано экспериментально  [c.316]

    Но при процессах обмена часть циркулирующих в крови и находящихся в тканях незаменимых аминокислот постоянно используется не только для синтеза белков, но и для образования других биологически важных соединений. Так, например, из фенилаланина после окисления его в тирозин в щитовидной железе образуется важный гормон тироксин, в мозговом веществе надпочечника тирозин превращается в другой гормон — адреналин, из аргинина получается креатин, входящий в состав мышц, метионин играет большую роль в процессах синтеза важнейших метилированных соединений (холина и креатина, стр. 366) и т. д. Таким образом, часть незаменимых аминокислот постоянно извлекается из крови, и, следовательно, остающиеся аминокислоты уже не могут быть полностью использованы для [c.342]

    Напомним, что синтез креатина в основном происходит в печени. Из печени с током крови он поступает в мышечную ткань, где, фосфори-лируясь, превращается в креатинфосфат. В синтезе креатина участвуют три аминокислоты аргинин, глицин и метионин (см. главу 1). [c.651]

    Креатинин представляет собой обычную форму, в виде которой креатин удаляется из организма млекопитающих. Количество креатинина, выделяемое ежедневно взрослым человеком, постоянно, причем оно тем больше, чем более развита мускулатура. В некоторых патологических случаях атрофии мускулатуры выделяются повышенные количества креатинина. Следовательно, креатин синтезируется не в мышцах и выделяется тогда, когда мышцы не способны его потреблять. В результате применения аминокислот, меченных N , было установлено (с применением техники срезов), что синтез креатина происходит в почках из гликоколя и аргинина, дающего гуанидиновый остаток (Бурсук Шенхеймер). Метилирование происходит, однако, в печени, причем метильная группа поставляется метионином (переметили-рование), что было доказано обработкой гуапидиноуксусной кислоты метионином, меченным дейтерием в метильной группе, в присутствии срезов печени (дю Виньо). [c.393]


    Углеродные атомы глицина переходят в состав пуринов (стр. 283), порфирина (стр. 322), глутатиона [134] (стр. 268), гликохолевой кислоты, гиппуровой кислоты [135] (стр. 266) и креатина. Как установлено посредством изотопных опытов, синтез креатина происходит путем реакции трансамидинйрования между аргинином и глицином и последующего метилирования гуанидинуксусной кислоты (гликоциамина) [136, 137] (стр. 372)  [c.321]

    Глубокий распад аминокислот, их диссимиляция, имеет место не только при нормальном питании, когда они образуются в результате переваривания белков. Распад аминокислот, правда в меньшем объеме, происходит также при низком содержании и даже при отсутствии белков в пище. Известно, что при безбелковом питании из организма с мочою выделяют конечные продукты азотистого обмена, освобождающиеся в результате превращений аминокислот. Следует также учесть, что часть аминокислот, образующаяся при распаде тканевых белков, используется для синтеза ряда азотистых соединений, входящих в состав тканей. Так, например, для синтеза креатина (стр. 403) используются глицин, аргинин и метионин (последние две аминокислоты относятся к числу незаменимых аминокислот) карнозин и ансерин синтезируются (стр. 409) из незаменимой аминокислоты гистидина. Аминокислоты используются также для синтеза гормонов белковой природы (инсулина, глюкагона, гормонов гипофиза и др.). Адреналин и тироксин синтезируются из незаменимой аминокислоты фенилаланина. Следовательно, некоторая часть аминокислот, образующаяся в результате распада белков тканей в организме при недостатке или отсутствии белков в пище, расходуется на синтез различных биологически важных веществ Часть незаменимых аминокислот постоянно расходуется как при нормаль ном питании, так и при белковом голодании. В последнем случае, т. е при белковом голодании (само собой разумеется, что и при полном голо Дании) должен ощущаться недостаток в незаменимых аминокислотах Между тем для синтеза подвергающихся распаду тканевых белков, необхо димо наличие полного набора всех аминокислот в соответствующих количе-ствах. При недостатке, а тем более при отсутствии тех или иных незаменимых аминокислот, синтез белков тканей уменьшается или вовсе прекращается. Следовательно, аминокислоты, образующиеся в процессе распада тканевых белков при голодании, если не полностью, то в значительной мере, не могут быть использованы для синтеза белков и подвергаются распаду с освобождением конечных продуктов аммиака, углекислого газа и воды. При наличии белков в пигце избыточное количество аминокислот, всасывающееся [c.343]

    В синтезе креатина участвуют три аминокислоты глицин, аргинин и метионин. Из глицина и аргинина в почках синтезируется гуанидинуксусная кислота в печени на гуанидинуксусную кислоту переносятся метильные группы от метионина с образованием креатина. (Подробнее об образовании креатина см. стр. 401). Следовательно, креатин, имеющийся в составе мышц, образуется не в мышцах, а к ним доставляется извне кровью. Скелетные мышцы, в противоположность другим органам, способны удерживать значительные количества креатина. Азот креатина составляет до 60/0 небелкового азота мышц. Значительная часть (больше половины) креатина в мышцах находится в связанном с фосфорной кислотой состоянии — в виде креатинфосфорной кислоты. [c.545]

    В качестве примера приводим схему биосинтеза креатина, в котором принимают участие три аминокислоты аргинин, глицин и метионин. Реакция синтеза протекает в две стадии. Первая стадия-биосинтез гуани-динацетата-осуществляется в почках при участии глицин-амидинотранс-феразы (КФ 2.1.4.1)  [c.455]


Смотреть страницы где упоминается термин Аргинин в синтезе креатина: [c.349]    [c.369]    [c.403]    [c.403]    [c.404]    [c.347]    [c.354]    [c.99]    [c.506]    [c.274]   
Биологическая химия Изд.3 (1998) -- [ c.455 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин

Аргинин синтез

Креатин



© 2025 chem21.info Реклама на сайте