Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы анионообразователи

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]


    Сера - элемент с резко выраженными металлоидными свойствами и элемент-анионообразователь. В почве и растениях сера в серосодержащих соединениях проявляет валентность от -2 до +6. В водных растворах она существует только в виде анионов, довольно легко способна менять степень окисления, что широко используется при ее определении. В биологических объектах сера может быть в виде элементарной серы, сероводорода, сульфидов, сульфатов, сульфитов, тиосульфатов и др. [c.196]

    Наличие 3 -орбиталей атома хлора резко увеличивает валентные возможности и вариации его положительных степеней окисления. Теоретически максимальная ковалентность хлора может достигать 9 (девять орбиталей при п = 3). Однако практически наблюдаемая координационная валентность хлора не превышает 6. При взаимодействии атомов хлора между собой и с другими элементами хлор проявляет степени окисления -1, О, -Ы, -ЬЗ, - -5, -Ьб и -1-7. Разнообразие валент ных состояний и степеней окисления делают химию хлора во многих отношениях отличной от химии фтора. В то же время оба элемента — типичные неметаллы с ярко выраженными окислительными свойствами. Поэтому главное в химии этих элементов — функционирование в качестве анионообразователей в бинарных и более сложных соединениях. [c.463]

    В р-блоке собраны элементы, которые являются типичными анионообразователями. Именно в р-блоке находятся все атомы, которые входят в состав органических лигандов и образуют непосредственное окружение центрального иона. Только 8 элементов р-блока (А1, Оа, 1п, Т1, Ое, 5п, РЬ и В1) образуют катионы. [c.284]

    Химические соединения с полупроводниковыми свойствами могут образовываться и при других сочетаниях элементов, например А > В (ZnSb), А BV (GeP), Аа " Вд (GaaSj) и т. п. Общим свойством подобных соединений является наличие ковалентных связей в подрешетке анионообразователя в соответствии с правилом октета (8 — №). [c.313]

    Водород занимает в периодической системе особое место. Двойственная роль водорода обусловлена тем, что, с одной стороны, у него на валентном уровне находится единственный электрон (как у щелочных металлов), а с другой стороны, в силу специфики 1-го периода ему недостает всего одного электрона до устойчивой электронной оболочки благородного газа (как у галогенов). По значению ОЭО (2,1) он занимает среднее положение среди элементов (0Э0р=4,1, ОЭОсз=0,7). Поэтому с менее электроотрицательными элементами он выступает в роли анионообразователя, а с более электроотрицательны.ми является катионообразователем. С учетом общих правил номенклатуры бинарных соединений к гидридам относятся только соединения водорода, в которых он отрицательно поляризован, т. е. в основном его соединения с металлами. Соединения водорода с неметаллами с этой точки зрения не являются гидридами. Их название определяется видом анионообразователя. Так, существуют галогениды водорода (НС1, НВг и т. п.), [c.63]


    Характеристика элементов VA-группы. Элементы VA-группы в периодической системе расположены справа от границы Цинтля. В соответствии с этим положением в химическом отношении они являются типичными анионообразователями. Однако с увеличением атомного номера неметаллические свойства элементов заметно убывают. Так, азот и фосфор относятся к типичным неметаллам, мышьяк и сурьму обычно называют полуметаллами или иногда металлоидами (металлоподобными), а висмут уже в значительной мере проявляет металлические свойства. Еслн учесть, что в компактном состояни[1 и мышьяк, и сурьма, и висмут обладают металлической проводимостью (отрицательный температурный К0э(1х )ициент электрической проводимости), то становится понятным, почему эти три элемента целесообразно рассматривать в рамках химии металлов. [c.282]

    Продукты взаимодействия металлов подгруппы хрома с кремнием по формульному составу и структурным особенностям во многом напоминают пниктогениды. Для всех трех элементов существуют дисилициды 3S 2, представляющие собой тугоплавкие соединения., обладающие полупроводниковыми свойствами. Дисилициды устойчивы к агрессивным средам при повышенных температурах. Существование низших силицидов для вольфрама и молибдена точно не установлено. Напротив, в системе Сг—Si установлено существование соединений rSi, raSi, rgSi, первое из которых является вырожденным полупроводником, а два других — металлиды. Таким образом, в ряду силицидов хрома наблюдается та же закономерность, что была отмечена для фосфидов с увеличением атомной доли анионообразователя наблюдается переход от металлических свойств к полупроводниковым, что обусловлено изменением характера химической связи путем замены катион-катионных связей у низших силицидов на анион-анионные у высших. [c.346]

    В соответствии с разделением элементов на катионо- и анионообразователи — металлы и неметаллы — в рамках элементохимии возможны три типа взаимодействия неметалл + неметалл, неметалл + металл, металл + металл. В зависимости от физико-химической природы промежуточных фаз эти взаимодействия приводят к образованию двух групп объектов. Химия неметаллических фаз изучает объекты, возникающие при взаимодействии неметалл + неметалл и неметалл + металл. А предмет химии металлических фаз, или металлохимии, составляет обширный класс разнообразных фаз, образованных в результате взаимодействия катионообразователей друг с другом. Правомерность такого разделения подтверждается различием природы образующихся соединений. Ниже представлена классификация взаимодействий в рамках элементохимии, в которой отмечены характерные особенности и признаки промежуточных фаз различного типа. Приведенная классификация относительна уже хотя бы потому, что нет четкой грани между металлами и неметаллами. В соответствии с этим по ряду признаков объекты химии неметаллических фаз обладают сходными свойствами. Разделение их по свойствам возможно провести только для фаз, подчиняющихся правилу формальной валентности, — так называемых нормально-валентных соединений. Характерной особенностью нормально-валентных продуктов взаимодействия в рамках химии неметаллических фаз является наличие только "катион-анионных" связей. [c.209]

    Например, в соединениях С(1зР2 и С(ЗР2 общее число валентных электронов на формульную единицу (пе) равно соответственно 16 и 12, а число атомов анионообразователя (Л а) — 2 и 2. Для dзP2 получаем 16/2 + Ьд, = 8, т.е. Ьа = О (анион-анионные связи отсутствуют). В случае dP 12/2 + 6а = 2, т.е. = 2 (присутствуют две анион-анионные связи на формульную единицу). Это правило применимо лишь для бинарных соединений з- и р-металлов, а также -элементов с полностью завершенной -оболочкой (подгруппы меди и цинка). Для пе]1еходных металлов с дефектной -оболочкой это правило трудно использовать, поскольку заранее невозможно оценить число валентных электронов металла, участвующих в образовании связей. Кристаллохимическое строение анионоизбыточных фаз достаточно сложно. Часто в структурах существуют слои, цепочки или изолированные группы из нескольких атомов анионообразователя. [c.261]

    Формально в их число входит и сам германий. Однако германий является типичным полупроводником с преимущественпо ковалентной связью, а следовательно, металлом в свободном состоянии быть не может. Тем не менее в большом числе соединений с более электроотрицательными элементами германий выступает в роли катионообразователя, что с химической точки зрения отражает метгшличес-кую природу элемента. В бинарных соединениях с металлами германий — ани-онообразователь, однако все эти соединения обладают металлическими свойствами, что характеризует германий как плохой анионообразователь. Точно так же он не обладает ярко выраженной способностью к образованию анионных комплексов типа [GeOg]2 . [c.380]

    Как злемент-анионообразователь сера по своей распространенности в земной коре стоит на втором месте после кислорода, тем не менее ее в 1300—1800 раз меньше, чем кислорода. Хотя содержание серы составляет всего лишь около 0,03%, этого количества хватает не только для связывания в сульфиды всей массы 15 халько-фильных элементов, слагающих 0,013—0,07% земной коры, но и для связывания в пирротин и пирит некоторого количества присутствующего в ней железа [123]. [c.9]



Смотреть страницы где упоминается термин Элементы анионообразователи: [c.383]    [c.480]    [c.239]    [c.480]    [c.42]    [c.54]    [c.60]    [c.77]    [c.298]    [c.359]    [c.183]    [c.281]    [c.363]    [c.363]    [c.251]    [c.265]    [c.268]    [c.379]    [c.57]    [c.58]    [c.58]    [c.251]    [c.261]    [c.265]    [c.268]   
Общая химия (1984) -- [ c.362 ]




ПОИСК







© 2025 chem21.info Реклама на сайте