Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинтля граница

    Систематика бинарных соединений по характеру химической связи позволяет на основании положения компонентов в периодической системе прогнозировать особенности кристаллохимического строения этих соединений. Руководящим принципом при этом является размещение компонентов относительно границы Цинтля. Если оба компонента располагаются слева от границы Цинтля, т. е. [c.49]


    Водородные соединения наряду с кислородными играют особую роль в химической характеристике элементов. Д. И. Менделеев кроме высших солеобразующих окислов к характеристическим относил и летучие водородные соединения . Оказалось, что сумма валентности элементов по водороду и высшей валентности по кислороду всегда равна 8. Это положение было и остается справедливым для элементов, расположенных справа от границы Цинтля, которые обладают достаточным числом валентных электронов для образования преимущественно ковалентной связи. Именно для этих элементов характерно образование летучих (главным образом, газообразных) водородных соединений. [c.64]

    Переходные металлы в силу дефектности и /оболочек, близости значений ионизационных потенциалов и атомных радиусов обладают обширными металлохимическими возможностями. Как правило, они являются прекрасными растворителями для других элементов (за исключением щелочных и щелочно-земельных), однако образуют непрерывные твердые растворы лишь между собой. Переходные металлы способны давать большое количество интерметаллических фаз разнообразного состава как при взаимодействии друг с другом, так и с элементами П1А-группы, бериллием и магнием. Кроме того, они хорошо взаимодействуют с элементами, расположенными справа от границы Цинтля. [c.211]

    Среди бинарных соединений, компоненты которых расположены по разные стороны от границы Цинтля, особое место занимают фазы внедрения. Они образуются в системах переходных металлов с углеродом, азотом, кислородом. Сюда же примыкают гидриды и некоторые бориды переходных металлов, хотя положение водорода в периодической системе неоднозначно, а бор расположен слева от границы Цинтля. Определяющим фактором при образовании фаз внедрения являются не индивидуальные химические особенности неметалла, а лишь соотношение атомных размеров (размерный фактор). Все фазы внедрения образуют плотноупаковапные структуры и обладают металлическими свойствами. [c.54]

    Бинарные соединения, оба компонента которых расположены справа от границы Цинтля, как отмечено выше, характеризуются преимущественно ковалентным типом взаимодействия в силу незначительной разности ОЭО. Правило октета здесь соблюдается, поскольку числа валентных электронов у обоих компонентов достаточно для реализации ковалентного взаимодействия. Для соедине- [c.54]

    Кристаллохимическое строение бинарных соедивений. Систематика бинарных соединений по характеру химической связи позволяет на основании положения компонентов в Периодической системе прогнозировать особенности кристаллохимического строения этих соединений. Руководящим принципом при этом является распо-пожение компонентов относительно границы Цинтля. Если оба компонента располагаются слева от границы Цинтля, т.е. у обоих существует дефицит валентных электронов, то образующиеся промежуточные фазы обладают металлическими свойствами (исключение составляют некоторые бориды). Когда оба компонента размещены справа от этой границы, т.е. обладают достаточным числом валентных электронов для образования ковалентных связей, образующиеся бинарные соединения характеризуются ковалентным типом взаимодействия. В случае нахождения компонентов по разные стороны от границы Цинтля возможно образование соединений с различным доминирующим типом химической связи — ионным , ковалентным и металлическим. При этом существенную роль играют три фактора. Во-первых, это разность электроотрицательностей. При значительной разности ОЭО образуются ионные солеобразные соединения (например, галогениды щелочных металлов). При небольшой разности ОЭО взаимодействие компонентов приводит к образованию бинарных соединений с преиму- [c.257]


    Общая характеристика элементов подгруппы титана. Валентная электронная конфигурация элементов 1УВ-групны титана, циркония и гафния п— )й п5 . Наличие четырех валентных электронов предопределяет возможность реализации высшей степени окисления +4, а энергетическая неравноценность этих электронных состояний служит причиной проявления переменных низших степеней окисления (+3 и +2), что характерно для титана. Отрицательные степени окисления для обсуждаемых элементов невозможны, поскольку в 18-клеточной форме периодической системы они расположены далеко слева от границы Цинтля. Поэтому в бинарных соединениях элементы подгруппы титана выступают исключительно в качестве катионообразователей. В то же время эти элементы образуют и комплексные катионы, и ацидокомплексы, что свидетельствует об ИХ амфотерности в широком смысле слова. [c.232]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Таким образом, граница между металлами и неметаллами не совпадает с границей Цинтля, а проходит по диагонали в общем направлении от бериллия к астату между элементами В — А1, 51 — Се, Аз — 8Ь, Те — Ро. Обоснованность диагональной границы между металлами и неметаллами наглядно проявляется в 18- и 32-Клеточной формах таблицы Менделеева, в которых элементы В-групп (переходные металлы), а также лантаноиды и актиниды естественным образом располагаются слева от этой границы. Все и /-элементы в виде простых веществ образуют плотноупакованные кристаллические структуры с доминирующим металлическим типом связи, хотя здесь проявляется и ковалентный вклад, обусловленный наличием дефектных внутренних электронных орбиталей. [c.243]

    При образовании интерметаллических фаз роль разности электроотрицательностей не может быть определяющей, поскольку элементы, расположенные слева от границы Цинтля , характеризуются сравнимыми величинами электроотрицательностей и разность их не превышает 0,8. При оценке разности электроотрицательностей в металлохимических реакциях необходимо использовать значения, характеризующие элементы в низших степенях окисления, поскольку в интерметаллических фазах высшие степени окисления реализоваться не могут. Определенную роль при взаимодействии металлов друг с другом играют факторы элект ронной концентрации и размерный. [c.210]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]


    Все элементы, располагающиеся слева от границы Цинтля, ха рактеризуются дефицитом валентных электронов, в силу чего в плот поупакованпых кристаллических структурах соответствующих про стых веществ доминирует металлическая связь. При этом граница Цинтля не является границей между металлами и неметаллами а лишь разграничивает элементы с дефицитом и избытком валент ных электронов, что определяет собенности кристаллохимического строения простых веществ. Обращает на себя внимание ряд исключений из правила 8—N. Так, свинец, расположенный справа от границы Цинтля, обладает плотноупакованной кристаллической решеткой с металлическим типом связи. Для последнего представителя УА-группы — висмута — характерно малое различие в межатомных расстояниях внутри слоя и между слоями 0,310 и 0,347 им, что фактически приводит к координационному числу 6. Ни одна из двух известных структур полония также не отвечает правилу К)м-Розери. Объясняется это тем, что с увеличением атомного номера элемента в пределах каждой группы возрастает количество элект- [c.30]

    С другой стороны, бор, находящийся слева от границы Цинтля, обладающий дефицитом валентных электронов, в виде простого вещества характеризуется неметаллическими свойствами. Из-за кайносимметричности 2/з-орбиталн и вследствие этого высоких значений потенциала ионизации и электроотрицательности бора имеет место затруднение к обобществлению электронов в пределах всего кристалла. В силу дефицита валентных электронов в кристаллических модификациях бора наблюдается их обобществление, которое ограничено локальными атомными группами. Поэтому бор образует Рис. 4. Икосаэ-сложные кристаллические решетки, структурным др — элемент кри-элементом которых служит икосаэдр (рис. 4), сталлической струк-который является своеобразным кластером , моди "°аци й бор состоящим из 12 атомов бора. [c.31]

    Иногда элементы подгруппы германия называют металлами IVA-группы. Формально в их число входит и сам германий. Однако, как известно, германий является типичным полупроводником с преимущественно ковалентной связью, а следовательно, металлом в свободном состоянии быть не может. Тем не менее в большом числе соединений с более электроотрицательными элементами германий выступает в качестве катионообразователя, что с химической точки зрения отражает металлическую природу элемента. В бинарных соединениях с металлами, т. е. элементами, расположенными слева от границы Цинтля, германий — анионообра-зователь, однако все эти соединения обладают металлическими свойствами, что характеризует германий как плохой анионообра- [c.214]

    Характеристика элементов VA-группы. Элементы VA-группы в периодической системе расположены справа от границы Цинтля. В соответствии с этим положением в химическом отношении они являются типичными анионообразователями. Однако с увеличением атомного номера неметаллические свойства элементов заметно убывают. Так, азот и фосфор относятся к типичным неметаллам, мышьяк и сурьму обычно называют полуметаллами или иногда металлоидами (металлоподобными), а висмут уже в значительной мере проявляет металлические свойства. Еслн учесть, что в компактном состояни[1 и мышьяк, и сурьма, и висмут обладают металлической проводимостью (отрицательный температурный К0э(1х )ициент электрической проводимости), то становится понятным, почему эти три элемента целесообразно рассматривать в рамках химии металлов. [c.282]

    Соли кислородсодержащих кислот. Поскольку элементы подгруппы мышьяка расположены правее границы Цинтля, соли кислородсодержащих кислот для этих элементов малохарактерньг. В высшей степени окисления мышьяк и его аналоги вообще не образуют солей, в которых они выступали бы в качестве катиона. Этим они существенно отличаются от элементов IVA-группы. Что касается степени окисления +3 для мышьяка и его аналогов, то, как отмечено выше, в группе сверху вниз ее стабильность увеличивается. Следовательно, в том же направлении должна возрастать устойчивость солей кислородсодержащих кислот. Для мышьяка, как наиболее электроотрицательного элемента в этой подгруппе, даже в степени окисления +3 соли неизвестны. Однако уже для сурьмы и особенно для висмута такие соли существуют. [c.297]

    На этом основании было сформулировано кристаллохимическое правгию Юм-Ротери, согласно которому координационное число в кристаллических структурах гфостых веществ, расположенных справа от границы Цинтля, равно 8 — N, где Л" — номер группы Периодической системы. Для элементов VIA-группы (S, Se, Те), у которых до октета недостает двух электронов, структурными элементами в кристаллах простых веществ являются линейные зигзагообразные цепочки (или замкнутые кольца) с к.ч. 2, которые между собой связаны слабыми силами Ван-дер-Ваальса. При этом расстояния между ближайшими соседями в предела одной цепочки также значительно меньше, чем между цепочками  [c.242]

    Все элементы, располагающиеся слева от границы Цинтля, характеризуются дефицитом валентных электронов, в силу чего в плотноупакованных кристаллических структурах соответствующих простых веществ доминирует металлическая связь. При этом граница Цинтля не является границей между металлами и неметаллами, а лишь разграничивает элементы с дефицитом и избытком валентных электронов, что определяет особенности кристаллохимического строения р 21. Икосаэдр - элемент простых веществ. Обращает на себя внимание ряд кристаллической структуры исключений из правила 8 - N. Так, свинец, располо- олиморфных модификаций женный на границе Цинтля, обладает плотноупакован-ной кристаллической структурой с металлическим [c.243]

    Из перечисленных соед. большинство имеет тетраэдрич. структуру (координац. число 4), лишь Mg8 и Na l кристаллизуются в структуре с коордииац. числом 6, характерной для бинарных ионных кристаллов, и являются диэлектриками. Полупроводниковые соед. могут образовываться и при др. сочетаниях элементов, находящихся по разные стороны границы Цинтля (АУВ , А2 Вз и т.п.). [c.57]


Смотреть страницы где упоминается термин Цинтля граница: [c.28]    [c.30]    [c.31]    [c.50]    [c.55]    [c.75]    [c.362]    [c.363]    [c.242]    [c.261]    [c.276]    [c.277]    [c.379]    [c.55]    [c.57]    [c.57]    [c.57]    [c.58]    [c.242]   
Неорганическая химия (1989) -- [ c.29 , c.49 , c.64 , c.74 , c.214 , c.232 , c.282 ]

Общая химия (1984) -- [ c.362 ]

Общая и неорганическая химия 1997 (1997) -- [ c.210 , c.242 , c.257 , c.261 , c.277 ]

Общая и неорганическая химия (2004) -- [ c.210 , c.242 , c.257 , c.261 , c.277 ]




ПОИСК







© 2025 chem21.info Реклама на сайте