Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число валентных электронов

    Фосфор Р (Is 2s 2/f 3s Зр ) по числу валентных электронов является аналогом азота. Однако как элемент 3-го периода он существенно отличается от азота — элемента 2-го периода. Это отличие состоит в том, что у фосфора больше размер атома, меньше энергия ионизации, большее сродство к электрону и большая поляризуемость атома, чем у азота. Максимальное координационное число фосфора шесть. Как и для других элементов 3-го периода, рл — рл-связывание для атома фосфора не характерно и поэтому в отличие от азота sp- и sp -гибридные состоянья орбиталей фосфора неустойчивы. Фосфор в соединениях проявляет степени окисления от —3 до +5. Наиболее характерна степень окисления +5. [c.365]


Рис. 31. Зависимость энергии диссоциации молекул от числа валентных электронов Рис. 31. Зависимость <a href="/info/133497">энергии диссоциации молекул</a> от <a href="/info/264834">числа валентных</a> электронов
    Сложность спектра зависит от числа валентных электронов в атоме элемента, строения электронных оболочек (s-, р- и Л-элементы) и температуры плазмы. Чем меньше число валентных электронов, проще электронная оболочка и ниже температура разряда, тем проще спектр элемента. Так, спектры щелочных металлов в области от 200 до 800 нм насчитывают всего несколько десятков линий, в то время как спектры d- и /-эле- [c.9]

    Как видим, по мере увеличения числа валентных электронов растворимость металлов в серебре падает. В случае же растворения в серебре золота (один валентный электрон 5 ) электронная концентрация не изменяется, поэтому золото и серебро растворяются друг в друге неограниченно. [c.253]

    Число валентных электронов [c.32]

    Из первого характерного свойства металлов следует, что по крайней мере часть электронов может передвигаться по всему объему куска металла. С другой стороны, из кристаллической структуры металлов следует, что их атомы не связаны друг с другом локализованными двухэлектронными связями, ибо числа валентных электронов атома недостаточно для образования подобных связей со всеми его соседями. [c.89]

    В случае элементов с двумя валентными электронами s-зона заполнена. Однако если s- и /з-уровни в изолированных атомах близки, то в кристаллах соответствующие зоны перекрываются. Следовательно, и в этом случае число валентных электронов недостаточно для заполнения энергетических уровней перекрывающихся зон. [c.116]

    Таким образом, в периодической системе при переходе от р-элементов Vin группы к s-элементам 1 группы уменьшение числа валентных электронов обусловливает закономерный переход от неметаллов с молекулярными кристаллическими решетками (Аг, lj, Р4) к неметаллам с атомно-цепной (S ), атомно-слоистой (Р ос) и атомно-коорди-национной структурами и далее к металлическим координа- [c.233]

    Образование энергетических зон возможно лишь при условии энергетического и пространственного соответствия перекрывающихся орбиталей (см. рис. 75). Поэтому растворимость веществ в металлах зависит не только от числа валентных электронов, но и от нх типа (5, ру [c.253]


    Интересная проблема возникает при попытке записать льюисову структурную формулу молекулы распространенного загрязнителя воздуха моноксида азота, N0, Для этой молекулы не удается построить конфигурацию с замкнутыми оболочками, потому что в ней нечетное число валентных электронов. Действительно, в N0 11 валентных электронов, пять из которых первоначально принадлежали атому азота, а щесть-атому кислорода. Таким образом, в молекуле N0 аюм азота или атом кислорода будет окружен только семью, а не восемью электронами. Поскольку азот-менее электроотрицательный элемент, чем кислород, следует ожидать, что неполное окружение должно быть именно у этого атома. Следовательно, наилучшей структурой N0 должна быть такая  [c.468]

    Наличием одного непарного электрона обусловливается сходство фтора с водородом. Однако различие в общем числе валентных электронов и орбиталей предопределяет значительное отличие этих элементов [c.280]

    По мере уменьшения числа валентных электронов и увеличения числа свободных валентных орбиталей, т. е. по мере смещения влево в периодической системе, тенденция к повышению устойчивых координационных чисел усиливается. [c.524]

    Карбонилы могут быть одно-, двух- и многоядерными. Одноядерные карбониты образуют -элементы с четным числом валентных электронов. -Элементы с нечетным числом валентных электронов образуют двухъядерные карбонилы кластерного типа со связью М—М. Кроме двухъядерных известны и другие карбонилы кластерного типа, например Рбз(СО)12, Со4(СО),2, НН,(СО),в. [c.553]

    Для вычисления формальных зарядов на атомах в молекуле каждому атому приписывают по одному электрону от каждой ковалентной связи, образуемой парой электронов с участием данного атома, плюс все его неподеленные электронные пары. Тогда формальный заряд на атоме совпадает с зарядом, который он имел бы, если бы стал изолированным ионом с таким же числом валентных электронов  [c.469]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    Для СЫ невозможно записать льюисову структуру с замкнутой электронной оболочкой, потому что эта молекула имеет нечетное число валентных электронов. Молекула СМ содержит девять валентных электронов, четыре из которых первоначально были связаны с атомами углерода и пять-с атомами азота. Таким образом, атом С либо атом N в молекуле СМ окажется окруженным только семью электронами вместо требуемых восьми. Поскольку углерод менее электроотрицателен, чем азот, этого следует ожидать для атома углерода. Поэтому наилучшая льюисова [c.469]

    Для объяснения большинства соединений, в которых число валентных электронов не меньше числа валентных орбиталей, достаточно воспользоваться представлением о двухатомных химических связях, которое позволяет рассматривать одновременно только пары атомов. Однако, как мы уже знаем из обсуждения бензола (разд. 13-5), локализованные молекулярные орбитали являются лишь приближенным описанием того, что имеет место в действительности. Иногда приходится конструировать делокализованные молекулярные орбитали из атомных орбиталей, принадлежащих нескольким или даже всем атомам молекулы. В случае молекулы бензола можно рассматривать раздельно связи С—Н и а-связи С—С, но шесть р-орбиталей атомов углерода приходится рассматривать совместно. [c.272]

    Кремний 81(15 2 2р 35 Зр ) по числу валентных электронов является аналогом углерода. Однако у кремния больший размер атома, меньшая энергия ионизации, большее сродство к электрону и большая поляризуемость атома. Поэтому кремний — элемент 3-го периода — по структуре и свойствам однотипных соединений существенно отличается от углерода — элемента 2-го периода. Максимальное координационное число кремния равно итести, а наиболее характерное — четырем. Как п для других элементов 3-го периода, рл — ря-связывание для кремния не характерно и потому в отличие от углерода р- и зр -гибридные состояния для него неустойчивы. Кремний в соединениях имеет степени окисления +4 и —4. [c.410]

    Таким образом, углерод обладает удачным сочетанием свойств его небольшие атомы с таким же числом валентных электронов, как и число валентных орбиталей, образуют друг с другом связь настолько же прочную, как и связь с кислородом. Авторы научно-фантастических романов долгое время описывали воображаемую, совсем непохожую на обычную, внеземную жизнь, основанную на неводной химии и элементе, отличном от углерода. Их излюбленным элементом был кремний, и они заселяли Марс чудовищами, тела которых подобны силиконовой замазке, а пища состоит из камней. Но чем больше становится известно о роли соединений углерода в земных живых организмах, тем труднее представить себе, что соединения кремния способны выполнять даже отдаленно напоминающую роль. Углерод обладает уникальными свойствами, которые не могут дублироваться ни одним другим известным элементом. [c.282]


    Математическое представление химических реакций. Химическая реакция между ансамблями молекул определяется как превращение исходного АМ в изомерный АМ соответствующим перераспределением валентных электронов. При этом всегда должны соблюдаться следующие два требования, обусловленные законами сохранения заряда и массы 1) атомные остовы АМ остаются неизменными 2) общее число валентных электронов АМ сохраняется постоянным. [c.176]

    Магний заметно отличается от бериллия размерами атома и нона (радиусы ионов Ве + и Mg + соответственрю равны 0,034 и 0,078 нм). От своего соседа по периоду — алюминия — магний отличается меньшим числом валентных электронов и относительно большим размером атома. Таким образом, у магния металлические признаки проявляются сильнее, чем у бериллия и алюминия. В частности, для магния менее характерно образование ковалентной связи, чем для бериллия и алюминия, и более характерно образование ионной связи. В этом отношении он ближе к типичным металлическим элементам — элементам подгруппы кальция. [c.476]

    Эти летучие карбонилы при температурах выше 100° С диссоциируют на СО и металл, если только не создано достаточно высокое давление СО. Металлы с четным числом валентных электронов (Сг, Мо, и , N1, Ре, Яи, Оз) могут образовать одноядерные карбонилы, а металлы с нечетным числом электронов, как правило, приводят к многоядерным карбонилам (Мп, Re, Со, Rh, 1г) или к гидрокарбонилам [17] [c.194]

    Матрица реакций. Поскольку общее число валентных электронов не меняется в результате химической реакции, оно должно быть тем же самым для матрицы связей исходных реагентов ЕМ (В) и продуктов реакции ЕМ (Е). Следовательно, S должно быть инвариантным относительно преобразования В —> Е, т. е. [c.446]

    Общее число валентных электронов бора и водорода равно 2-3 4-+ 6 = 12, в то время как для образования имеющихся 8 парных взаимодействий (связей), согласно методу локализованных связей, нужно 16 электронов. [c.58]

    Таким образом, имея одинаковое число валентных электронов, углерад и кремний образуют соединения одинакового состава. Однако по строению, а следовательно, и по химической активности однотипные соединения углерода и кремния существенно отличаются. [c.413]

    На рис. 3 представлена зависимость удельной активности (/Суд) от числа валентных электронов металла-катализатора. Кривая / показывает изменение удельной активности металлов в отношении реакции изотопного обмена в молекулярном водороде. В -1У периоде наиболее активным оказывается никель (3 , 45 ), у которого почти полностью заполнена -зона. Завершение заполнения -зоны при переходе от N1 к Си приводит к снижению активности. Эта зависимость обусловлена влиянием электронной структуры металла на характер и энергию поверхностного взаимодействия с водородом. [c.34]

    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]

    На Енешнем слое у -элементов находятся 1—2 электрона (пз-со-стояиие), остальные валентные электроны расположены в (п—1) -состоянии предвнешнего слоя. Подобное строение электронных оболочек атомов -элементов определяет ряд их общих свойств. Простые вещества, образованные переходными элементами, являются металлами (число валентных электронов в их атомах заметно меньше числа орбиталей). [c.503]

    Таким образом, металлические кристаллы образуются элементами, в атомах которых число валентных электронов мало по сравнению с числом энергетически близких валентных орбиталей. Вследствие этого химическая связь в металлических кристаллах сильно делокализована. [c.102]

    О кремния к алюминию и далее к s-элементам магнию и натрию число валентных электронов уменьшается, а число свободных валентных эрбиталей увеличивается. Это понижает прочность двухцентровой связи и усиливает тенденцию к образованию нелокализованной, а в пределе — металлической связи (электронного газа). [c.233]

    Металлические твердые растворы. Металлы характеризуются повышенной склонностью растворять металлы и в меньшей степени неметаллы. Эта способность — следствие предельной нелокализованности металлической связи. Вследствие дефицита электронов (см. рис. 75 валентная зона металлического кристалла может принимать некоторое число добавочных электронов, не вызывая изменений структуры и металлических признаков кристалла. Например, в кристалле серебра, атомы которого имеют по одному валентному электрону электронная концентрация (отношение общего числа валентных электронов к общему числу атомов в кристалле) равна 1. Но она может возрастать до 1,4 за счет электронов, вносимых атомами других элементов. [c.253]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    В атоме углерода в отличие от всех других элементов число валентных электронов равно числу валентных орбиталей. Это одна из основных причин большой устойчивости связи С — С и исключительной склонности углерода к образованию гомонепей. Наблюдается резкое уменьшение энергии связей от углерода к азоту  [c.391]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Поскольку связь М—со слагается из <т- и л-связей, для образования кластерных карбонилов требуется большее число валентных электронов -элемента, чем для образования кластерных галидов, у которых связь М—Hal преимущественно одинарная. Таким образом, если кластерные галиды характерны для -элементов V, VI и VII групп, то кластерные карбонилы чаще всего образуют -элементы VII (Мп, Тс, Re) и в особенности VIII группы (Fe, Ru и Os Со, Rh и Ir). Иными словами, кластерные карбонилы характерны для элементов, у которых число валентных электронов превышает число электронов, необходимых для осуществления дативных п-связей МСО. [c.572]

    Общее число валентных электронов в молекулах, подобных ВеСЬ, недостаточно для того, чтобы целиком заполнить вненпшй электронный слой атома бериллия. Поэтому такие молекулы называют э л е к т р о н о д е ф и ц и т и ы м и. Так, в молекуле ВсС12 [c.610]

    Льюисовы структуры для молекул, подобных СН или N0, в которых содержится нечетное число валентных электронов, не позволяют приписать каждому атому замкнутую электронную оболочку. По крайней мере один атом, например углерод в СН, остается с незамкнутой оболочкой. В результате наличия в молекуле СН незамкнутой электронной оболочки две молекулы СН способны объединяться с образованием димера (СН)2, называемого дицшно.м. Причиной протекания такой реакции является образование новой углерод-углеродной связи без сколько-нибудь значительного ослабления тройной связи между углеродом и азотом  [c.470]

    Бор, углерод и азот принадлежат к числу элементов второго периода и имеют сходные размеры. Они отличаются по числу валентных электронов бор обладает тремя валентными электронами, углерод-четырьмя, а азот-пятью. Кремний - элемент третьего периода.-попобно углероду, имеет четыре валентных электрона, но они находятся на один главный энергетический уровень дальше от ядра и характеризуются главным квантовым числом 3, а не 2. Под своими валентными электронами [c.270]

    Общее число валентных электронов = 2Ь — которые находятся в валентной оболочке А с учетом образования с ним химических связей других атомов АМ, также лежит внутри интервала (bumini kmax)- Сумма Т всех элементов 1 е-матрицы равна общему числу валентных электронов общей совокупности [c.175]

    Число валентных электронов "некоторого атома г молекулы чавно сумл1е элементов соответствующей строки или столбца, т. е. [c.445]

    Рассмотрим соединения, такие, как ВаНв, получившие в методе ВС название молекул с дефицитом электронов. При наличии п связей в структурной формуле этих молекул число валентных электронов т< 2/г. Это создает трудность объяснения электронной структуры в методе ВС, где для каждой связи требуется пара электронов. Кроме того, в бороводородах имеются так называемые водородные мостики, где один атом Н связан с двумя атомами бора, несмотря на наличие у него только одного электрона. В методе МО ЛКАО бороводороды и им подобные соединения не требуют особого выделения, в них как раз столько валентных электронов, сколько нужно для заполнения всех связывающих МО. Например, в молекуле ВаНд [c.102]

    Стремление во всех случаях объяснить значение стехиометрической валентности элементов через число их валентных электронов приводит к структурам, которые неверно передают свойства образуемых ими соединений. В этом смысле очень неудачны графические формулы, составляемые по числу валентных электронов атомов. Так, исходя из грехвалентности алюминия и двухвалентности кислорода [c.80]

    Таким об )азом, при не[)еходе но периоду от/7-элемента VIII группы к -элементу I группы уменьшение числа валентных электронов обусловливает закономерный переход от неметаллов с молекулярной кристаллической решеткой (Аг, С ,, РО к неметаллам с атомноцепной (5 ), атомно-слоистой (Рг,,. ) и атомно-координационной [c.183]


Смотреть страницы где упоминается термин Число валентных электронов: [c.441]    [c.62]    [c.271]    [c.175]    [c.149]    [c.446]   
Металлоорганическая химия переходных металлов Том 1 (1989) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте