Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллохимическое строение

    Систематика бинарных соединений по характеру химической связи позволяет на основании положения компонентов в периодической системе прогнозировать особенности кристаллохимического строения этих соединений. Руководящим принципом при этом является размещение компонентов относительно границы Цинтля. Если оба компонента располагаются слева от границы Цинтля, т. е. [c.49]


    Закон постоянства свойств. Кристаллохимическое строение и свойства. Логическим следствием закона постоянства состава является закон постоянства свойств (Пруст, 1806) — свойства веществ не зависят от способа его получения и предыдущей обработки. Совершенно очевидно, что этот закон относится только к молекулярным соединениям. Свойства химических соединений, не имеющих молекулярной структуры, прямо зависят от способа получения и предыдущей обработки. Это прежде всего связано с тем, что количест- [c.25]

    Для веществ немолекулярной структуры не следует писать структурные формулы, так как последние искажают кристаллохимическое строение. Например, в кристаллических структурах кар- [c.26]

    Систематическое, целенаправленное и осознанное изучение огромного фактического материала современной неорганической химии невозможно без руководящего принципа, роль которого играют периодический закон и периодическая система элементов как его графическое выражение. Без преувеличения можно сказать, что уровень квалификации химика определяется тем, насколько он способен творчески и свободно использовать те общие закономерности в изменении природы химической связи, химического и кристаллохимического строения, свойств веществ, которые диктуются явлением периодичности. Физическая сущность этого явления заключается в особенностях электронного строения атомов. [c.5]

    ХИМИЧЕСКОЕ И КРИСТАЛЛОХИМИЧЕСКОЕ СТРОЕНИЕ [c.26]

    Появление нового комплекса свойств у молекул и кристаллов ио сравнению с исходными атомами обусловлено возникновением химических связей в процессе агрегации. Основополагающей идеей, проходящей красной нитью через всю современную химию, является тезис о том, что все свойства веществ обусловлены их химическим и кристаллохимическим строением. А химическое и кристаллохимическое строение вещества в первую очередь определяется природой химических связей взаимодействующих атомов . С этой точки зрения переход от изолированных атомов к молекулам и кристаллам, сопровождающийся перераспределением электронной плотности и возникновением химических связей, есть переход от физической формы движения материи к химической. [c.27]

    В соответствии с двумя стадиями образования простых веществ из элементов вводятся представления об их химическом и кристаллохимическом строении. При этом термин химическое строение относится к молекулярной форме химической организации вещества. Таким образом, процесс образования простого вещества из атомов химического элемента представляет собой химическую реакцию. Образовавшийся продукт обладает качественно своеобразными свойствами. За счет возникновения химических свя.чей энергия системы уменьшается, что проявляется в наличии экзотермического - ф-фекта при взаимодействии. Следовательно, простое вещество представляет собой продукт химического взаимодействия одинаковых атомов и его необходимо рассматривать как гомоатомное химическое соединение .  [c.28]


    При изучении бинарных соединений их свойства следует рассматривать в неразрывной связи с особенностями межатомного взаимодействия и кристаллохимического строения. [c.48]

    НИИ значительного количества водорода, как правило, кристаллохимическое строение металла-растворителя претерпевает изменение. Тогда образуются фазы внедрения. [c.101]

    Кристаллохимическое строение — порядок расположения и природа связи атомов в пределах элементарной ячейки, их взаимное влияние друг на друга, а также распределение электронной плотности, величины эффективных зарядов. Как видно из этого определения, понятие кристаллохимического строения представляет собой превращенную форму химического строения молекул применительно к координационным решеткам. Вот почему теория химического строения Бутлерова — общехимическая теория, в одинаковой степени приложимая как к органическим, так и неорганическим объектам. На рис. 6, а приведена кристаллическая структура высокотемпературной модификации стехиометрического оксида титана ТЮ. Она показывает только порядок размещения атомов в элементарной ячейке и не отображает природу межатомных связей, а также их взаимное влияние. Вообще кристаллическая структура в той мере отражает кристаллохимическое строение вещества, в какой структурная формула — химическое строение молекулы. В действительности химическое и кристаллохимическое строение — понятия динамические, а не статические. [c.26]

    Понятие о квантовой химии. В самом общем виде квантовая химия — это приложение современной квантовой теории для рещения химических проблем. Она занимается изучением строения и физико-химических свойств молекул, радикалов, комплексов н кристаллов на основе представлений современных квантовых теорий, в частности квантовой механики. Квантовая химия охватывает учение о природе химической связи, об электронной структуре молекул и других объектов исследования химии, а также вскрывает взаимосвязь между структурой и свойствами, включая реакционную способность веществ. Квантовая химия — современное учение о химическом и кристаллохимическом строении вещества, а также взаимосвязи между строением и свойствами на основе представлений и методов квантовой механики. Таким образом, квантовая химия представляет собой дисциплину на стыке физики и химии и имеет первостепенное значение для всей современной химии.. [c.88]

    Химическое соединение — однородное вещество постоянного или переменного состава с качественно своеобразным химическим или кристаллохимическим строением, образованное из атомов одного или нескольких химических элементов. Химическое соединение прежде всего характеризуется однородностью. В Основах химии Менделеев пишет Ближайший предмет химии составляет изучение однородных веществ... Химия занимается только однородными телами . Химическим соединением вообще называют такое соедине  [c.28]

    Однако к фазам переменного состава относятся и растворы. В газовых растворах, несмотря на их однородность, имеется смесь молекул (например, молекул кислорода, азота, диоксида углерода и т. п.). В жидких растворах отсутствуют молекулы с качественно новым химическим строением по сравнению с химическим строением исходных компонентов. Твердые растворы обладают кристаллохимическим строением компонента-растворителя. В отличие от твердых растворов химическое соединение переменного состава характеризуется присущим только ему кристаллохимическим строением, не свойственным строению компонентов. Поэтому в противоположность твердым растворам свойства соединений переменного состава резко отличаются от свойств составляющих веществ. [c.29]

    Химическому соединению присуще только ему свойственное химическое или кристаллохимическое строение. В химическом или кристаллохимическом строении главное — это химическая связь, ее природа. Именно химические соединения характеризуются наличием химической связи. С этой точки зрения молекулы и кристаллы, построенные из одинаковых атомов, являются химическими соединениями. Атомы в молекуле водорода связаны ковалентной связью. [c.29]

    Первые физические методы установления строения вещества возникли в 1912 г. с началом применения дифракции рентгеновского излучения для структурного анализа. В настоящее время для исследования химического и кристаллохимического строения веществ применяются дифракционные, спектроскопические, резонансные и другие физические методы. Многие из этих методов дают возможность получать информацию о более тонких вопросах химического и кристаллохимического строения вещества распределении электронной плотности и степени ионности связи, эффективных зарядах атомов, валентных состояниях атомов химических элементов, входящих в соединение, и т. п. Кроме того, физические методы принципиально отличаются от химических тем, что они являются неразрушающими, т. е. в процессе исследования химическое и кристаллохимическое строение вещества не изменяется. [c.173]

    Итак, материал по гибридизации электронных орбиталей атомов при образовании химических связей подтверждает исключи тельную плодотворность и важность самой идеи гибридизации в МВС. Прежде всего гибридизацией определяется химическое а кристаллохимическое строение веществ. А свойства веществ в первую очередь зависят от их химического и кристаллохимического строения. Кроме того, гибридизация делает тождественными непо деленные электронные пары атомов. Наконец, гибридные связи обладают большей прочностью (энергетически более выгодны) по сравнению со связями, образованными чистыми электронными облаками. Относительная прочность гибридных связей (прочность 5-связей принята за единицу) приведена ниже  [c.110]


    И КРИСТАЛЛОХИМИЧЕСКОГО СТРОЕНИЯ ВЕЩЕСТВА [c.173]

    Поскольку физико-химическая природа вещества определяется его структурой, в химии исключительно важную роль играют методы установления химического и кристаллохимического строения. До создания современных физических методов исследования химического и кристаллохимического строения вещества для получения информации о структуре соединений пользовались методом химических реакций (механизм и скорость реакций). На этом пути были сделаны определенные успехи. Достаточно напомнить классические исследования по геометрической и оптической изомерии неорганических и органических соединений. Однако, основываясь на химических методах, в принципе нельзя получить количественные данные по длинам химических связей, а также углов между ними. Между тем количественные характеристики по длинам химических связей и пространственной их направленности являются походными данными для определения химического и кристаллохимического строения веществ. [c.173]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    Ввиду наличия примесей (главным образом Fe, Al и Mg) технический продукт нередко окрашен в темный или синий цвет. В чистом виде карбид кремния представляет собой бесцветные кристаллы. Подобно алмазу и графиту, он образует две кристаллографические моди-([/икацни — кубическую и гексагональную. Разница заключается только в том, что в Si половина атомов углерода замещена на атомы кремния. Поскольку кристаллохимическое строение Si обеспечивается прочными ковалентными связями, карборунд обладает высокой твердостью, износостойкостью (кубическая модификация) и тугоплавкостью. Химически и термически Si очень устойчив. Термическое разложение на элементы заметно лишь при температуре выиге 2300 °С. На карбид кремния не действуют индивидуальные минеральные кислоты, но он растворяется в смеси HF+HNO3. Сплавление с щелочами в присутствии окислителей [c.193]

    К р у г л и ц к и й Н. Н., Третиныик В. Ю., Овчаренко Ф. Д. Структурообразование в водных суспензиях глин в связи с особенностями кристаллохимического строения глинистых минералов. — В кн. Физико-химическая механика дисперсных систем. Киев, Наукова думка , 1966, с. 175—179. [c.276]

    Характеристические соединения. Характеристические оксиды ЭО получают из элементов. Оксиды разлагаются до плавления. От цинка к ртути термическая стойкость уменьшается. В отличие от ZnO (структура вюртцита) и HgO (ромбическая структура) оксид кадмия имеет кристаллохимическое строение Na l, что свидетельствует о большей ионности dO. Оксид цинка амфотерен, а dO и HgO — основные оксиды. Гидроксиды Э(0Н)2 практически не растворяются в воде Zn(OH)a (рПР П), d(0H)2 (рПР14) и Hg(OH)a (рПР 16). Гидроксид ртути химически малостоек. Гидроксид цинка — амфолит с преобладанием основных свойств. При растворении в щелочах образуются гидроксокомплексы (Me Zn (0Н)4]), а не цинкаты типа NaaZnOa. Последний может быть получен только в твердом состоянии спеканием, например, соды с ZnO. [c.135]

    Все элементы, располагающиеся слева от границы Цинтля, ха рактеризуются дефицитом валентных электронов, в силу чего в плот поупакованпых кристаллических структурах соответствующих про стых веществ доминирует металлическая связь. При этом граница Цинтля не является границей между металлами и неметаллами а лишь разграничивает элементы с дефицитом и избытком валент ных электронов, что определяет собенности кристаллохимического строения простых веществ. Обращает на себя внимание ряд исключений из правила 8—N. Так, свинец, расположенный справа от границы Цинтля, обладает плотноупакованной кристаллической решеткой с металлическим типом связи. Для последнего представителя УА-группы — висмута — характерно малое различие в межатомных расстояниях внутри слоя и между слоями 0,310 и 0,347 им, что фактически приводит к координационному числу 6. Ни одна из двух известных структур полония также не отвечает правилу К)м-Розери. Объясняется это тем, что с увеличением атомного номера элемента в пределах каждой группы возрастает количество элект- [c.30]

    Рассмотрим изоэлектронные ряды углерода и кремния. Первый из них включает в себя С—BN—ВеО—LiF, а второй Si—AIP—MgS— Na l. Принцип формирования изоэлектронных рядов состоит в следующем. Возглавляет ряд простое вещество IVA-группы (4 электрона на атом). Остальные члены ряда — это соединения, компоненты которых равно отстоят от IVA-группы. Число валентных электронов у катионообразователя (П1А->1А) уменьшается, а у анионообразователя (VA- VHA) увеличивается. При этом среднее число валентных электронов на атом в формульной единице остается постоянным. Разность ОЭО компонентов соединений в изоэлектрон-ных рядах растет, следовательно, нарастает ионный вклад в химическую связь и закономерно изменяется характер кристаллохимического строения фаз. [c.51]

    Все металлоподобные гидриды обладают собственным кристаллохимическим строением (в отличие от твердых растворов водорода в металлах) и свойствами, типичными для металлов металлическим блеском, значительной твердостью. Многие из них являются жаропрочными и коррозионностойкими веществами. По механическим свойствам металлоподобные гидриды уступают металлам, так как они более хрупки. Плотность этих гидридов меньше плотности исходных металлов, а энтальпии образования больше, чем у солеобразных гидридов, например для 2гН АН", oos = =—169,6 кДж/моль. В металлоподобных гидридах часть атомов водорода отдает электроны в зону проводимости металла, а электроны остальных атомов образуют с неспаренными электронами металла ковалентные связи. Последние и являются причиной увеличения твердости при образовании металлоподобных гидридов по сравнению с исходными металлами. Эти представления хорошо согласуются с фактом миграции водорода к катоду при длительном пропускании постоянного электрического тока, а также с уменьшением магнитной восприимчивости гидридиых фаз из парамагнитных металлов. [c.104]

    В форме простых веществ галлий, индий и таллий представляют собой серебристо-белые металлы, при этом галлий хрупок, а индий и таллий очень мягкие. Индий и таллий кристаллизуются в плотноупакованной кубической или близкой к ней решетке. Кристаллохимическое строение галлия оригинально и необычно для металлов. Структуру галлия лишь условно можно назвать псевдотетрагональ- [c.157]

    Мы не приводим да1ппз1е по нитридам, так как они в большей мере являются диэлектриками, а не полупроводниками. Все соединения типа кроме нитридов, имеют кристаллохимическое строение сфалерита. И атомы А , и атомы В проявляют ковалентность, равную 4, причем три связи образуются по обменному механизму, одна — по донорно-акцепторному. Соединения типа A B" являются изо- [c.162]

    Оксиды металлов. Характер химической связи в оксидах металлов тесно связан с их химическим и кристаллохимическим строением. Оксиды с преимущественной ионной связью (например, щелочных и щелочно-земельных металлов) характеризуются координационными структурами с координационным числом кислорода 6 или 8. С ростом степени окисления металлического элемента возрастает ковалентный вклад в химическую связь химическое строение таких оксидов — молекулярное. При этом координационное число металлического элемента возрастает, а координационное число кислорода, наоборот, уменьшается (например, СгОз, МпаО,, ReaO, и OSO4). Для таких оксидов нарушение стехиометрии невозможно. [c.314]

    Ковалентные сульфиды образуют в основном 5/з-металлы, особенно с конфигурацией внешних электронов ns4p (Al, Ga, In, Tl). Большая часть этих сульфидов имеет сложное кристаллохимическое строение, образуя слоистые и каркасные структуры. Ковалентные сульфиды являются полупроводниками. По химической природе эти сульфиды амфотерны, в воде почти нерастворимы, малоустойчивы по отношению к химическим реагентам. Многие из них реагируют с влагой воздуха с выделением HaS, активно взаимодействуют с кислородом, галогенами. [c.326]

    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    Второе издание отличается от первого, вышедшего в свет в 1977 г. Введена новая глава, посвященная методам исследования химического и кристаллохимического строения вещества. При переработке материала учтены сонеты и критические замечания коллег — профессоров и преподавателей, участвовавших в общественном обсуждении книги в Ленинградском и Иркутском университетах. Автор особенно благодарит проф. Р. Б. Добротина Ю. Н. Кукушкина, А. А. Макареню, А. С. Черняка, Г. Г. Диогенова и доц. В. А. Рабиновича, М. Н. Захвалинского, М. Д. Николаеву  [c.4]

    Химическая связь и валентность. Понятие о химической связи является одним из основополагающих в современной химической науке. Физико-химическая природа вещества целиком определяется его химическим или кристаллохимическим строением. В настоящее время под химическим и кристаллохимическим строением понимают совокупность энергетических, геометрических и кваитовохимических характеристик вещества порядок, длина, кратность и энергия связи, распределение и пространственная направленность электронного облака, эффективные заряды атомов и т. и. Но главное в учении о химическом и кристаллохимическом строении вещества — химическая связь. Химическое и кристаллохимическое строение в первую очередь определяется характером межатомных связей всех атомов, входящих в состав данного вещества. [c.73]

    В целом оксид углерода представляет собой пример химического соединения, когда валентности элементов больше числа неспаренных электронов. Углерод и кислород трехвалентны, хотя атомы этих элементов имеют по два неспаренных электрона. Не следует думать, что оксид углерода — исключение. Наоборот, подавляющее большинство неорганических соединений образуется или на основе донорно-акцепторной связи , или одновременно сочетает в себе обменный и донорно-акцепторный механизмы. Обратимся к примеру сульфида цинка, кристаллохимическое строение которого показано на рис. 4. Каждый атом цинка связан с четырьмя атомами серы и, наоборот, каждый атом серы — с 4 атомами цинкг. Поэтому атомы цинка и серы проявляют одинаковую валентность, равную четырем. Между тем атом цинка в нормальном состоянии не имеет ни одного неспаренного электрона, а атом серы характеризуется двумя одиночными электронами. При возбуждении атома цинка происходит промотирование электрона 4з нй 4р и появляются два неспаренных электрона  [c.97]

    Рассмотрим реальные примеры химического и кристаллохимического строения типичных неорганических веществ на основе концепции гибридизации электронных орбиталей атомов. В иолекуле аммиака атом азота подвергается -гибридизации . При этом атомы водорода занимают три вершины тетраэдра и образуются три 5—р-гибридные связи. А четвертая вершина тетраэдра занята гибридным электронным облаком, не участвующим в образовании химической связи . Однако разница в химическом строении метана и аммиака заключается и в том, что угол между связями в аммиаке меньше тетраэдрического и равен 107° (рис. 43). Таким образом, геометрическая модель молекулы аммиака представляет собой чуть искаженный тетраэдр. Дело заключается в том, что увеличение примеси -состояния в гибридной орбитали приводит [c.107]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]


Смотреть страницы где упоминается термин Кристаллохимическое строение: [c.3]    [c.49]    [c.54]    [c.55]    [c.56]    [c.100]    [c.183]    [c.230]    [c.354]    [c.2]    [c.28]    [c.104]    [c.109]    [c.129]    [c.181]    [c.186]   
Общая и неорганическая химия 1997 (1997) -- [ c.20 , c.257 ]

Общая и неорганическая химия (2004) -- [ c.20 , c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Закон постоянства свойств. Кристаллохимическое строение и свойства

Кристаллохимическое строение бинарных соединений

Кристаллохимическое строение сиды

Методы исследования химического и кристаллохимического строения вещества

Особенности строения цеолитов некоторых кристаллохимических групп

СТРОЕНИЕ АТОМОВ И КРИСТАЛЛОХИМИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТОВ Содержание элементов во Вселенной

Химическое и кристаллохимическое строение простых веществ



© 2025 chem21.info Реклама на сайте