Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стоксовы линии

    Спектры резонансного комбинационного рассеяния света в полиине указывают, по мнению автора , на ярко выраженную одномерность цепочек, длина которых составляет 30 20 С = С связей. Раман-спектр природного фафита состоит из одной (стоксовой) линии поглощения при 1570-1580 см . В стеклоуглероде, углях, пироуглероде, саже наблюдаются две линии 1360 и 1580 см , а в напыленном и белом углероде (чаоите) - три 1360, 1580 и 2140 см . Полагают что дополнительная широкая линия в спекфе карбина 2140 см  [c.33]


    Пусть среда освещается монохроматическим светом с квантами /lVQ, которые поглощаются молекулами среды, вследствие чего они сами становятся источником рассеянного света той же частоты т. е. будет классическое рассеяние света по Релею. Часть энергии падающих квантов /lVo может расходоваться и на возбуждение колебаний ядер внутри молекулы частоты V, и тогда в рассеянном свете появляются кванты меньшей величины /гvд — Ну. Если квант /lVo поглощается молекулой, в которой колебательный уровень уже был возбужден, то энергия этого возбуждения может добавиться к энергии кванта падающего света, и вследствие этого молекула излучает также кванты /гvo + /гv. В результате этого явления в спектре рассеяния наряду с основными линиями частоты V,, появляются симметрично расположенные по обеим их сторонам линии комбинационного рассеяния Vц+v. Линии спектра, которым соответствуют частоты Vo —V, называются стоксовыми, линии с частотами 0 + V — антистоксовыми. [c.74]

    Отсюда следует, что для данного А " в спектре рассеяния вблизи яркой релеевской линии появляются два симметричных спутника с меньшей частотой (стоксова линия) и с большей частотой (антисток-сова линия)  [c.146]

    В результате взаимодействия молекулы с квантом падающего света рассеянный свет будет иметь частоту Уо—V , которой в спектре соответствует стоксова линия. [c.171]

    Вращательные спектры комбинационного рассеяния можно использовать для определения вращательных постоянных и других констант гомонуклеарных молекул На, О2, СЬ, которые не имеют спектров поглощения в ИК-области. Для этого нужны приборы высокой разрешающей силы, так как комбинационные смещения во вращательных спектрах малы и стоксовы линии лежат очень близко к релеевской, затмевающей их своей интенсивностью. Поэтому наряду с КР-спектрами для указанной цели используют с большим успехом электронные спектры. [c.155]

    Схема переходов молекулы при поглощении квантов света и при переходе в низшее энергетическое состояние с излучением квантов (рис. 10) поясняет появление линий в спектре комбинационного рассеяния. Измерение частот линий в спектре комбинационного рассеяния (стоксовых линий) дает возможность определять частоту колебания атомов в молекуле, т. е. молекулярную константу  [c.17]

    Смещение стоксовой линии V — = kE "l h дает величину А ", т. е. сведения об уровнях энергии исследуемых молекул. Разности вращательных и колебательных уровней молекул малы, а кванты соответствующих переходов лежат в МВ- и ИК-областях спектра поглощения. Явление КР позволяет находить те же разно- [c.146]

    В КР-спектре двухатомных молекул наблюдаются 3 линии линия классического рассеяния, стоксова линия и антистоксова линия. В какой последовательности возрастает интенсивность этих линий  [c.7]


    Спектроскопия комбинационного рассеяния (КР) — это раздел оптической спектроскопии, изучающий рассеяние монохроматического света, которое сопровождается изменением его частоты. Комбинационное рассеяние было открыто одновременно и независимо советскими физиками Л. И. Мандельштамом и Г. С. Ландсбергом и индийскими физиками В. Раманом и С. Кришнаном. Причина комбинационного рассеяния — неупругое соударение кванта света с молекулой. При этом часть энергии может уйти на возбуждение молекулы, которая перейдет на более высокий уровень. Тогда энергия рассеянного света будет меньше энергии падающего света на величину энергии перехода. В спектре рассеянного света кроме линии падающего света с волновым числом vo появляются линии с волновым числом VlЭнергия перехода характеризуется разностью Av,=vo —VI. Если молекула находилась в возбужденном состоянии, то при соударении с квантом света она может отдать ему свою энергию возбуждения и перейти в основное состояние. Тогда энергия рассеянного излучения возрастает и в [c.247]

    Смещение стоксовой линии V — = АЕ 1ск дает величину [c.146]

    Линия КР с частотой Уг < уо называется раман-стоксовой линией. [c.287]

    Стоксовы линии отвечают переходам молекулы из более низкого в более высокое энергетическое состояние, при этом энергия фотона уменьшается. Антистоксовы линии соответствуют переходам молекулы из возбужденного состояния в более низкое энергетическое состояние, при этом энергия фотона возрастает. [c.287]

    Обычно рассеянное излучение имеет более низкую частоту (стоксовы линии), потому что энергия поглотилась молекулой. Но если фо- [c.477]

    Почему стоксовы линии всегда более интенсивны, чем антистоксовы в спектре КР  [c.361]

    Интенсивность стоксовых линий значительно больше интенсивности антистоксовых линий. Линии комбинационного рассеяния в рассеянном свете наблюдаться не будут, если при вынужденном колебании диполя элек- [c.17]

    Возникновение спутников основной частоты получило название комбинационного рассеяния (КР) света или эффекта Рамана (в зарубежной литературе). Оно было открыто независимо и одновременно советскими физиками Мандельштамом и Ландсбергом и индийскими физиками Раманом и Кришнаном. Вероятность неупругого столкновения мала, поэтому стоксовы линии слабые, интенсивность их в миллионы раз меньше релеевской, при фотографировании требуется длительная, часто многочасовая экспозиция. Еще более слабы ан-тистоксовы линии, так как вероятность сверхупругого рассеяния еще меньше (при низких температурах доля возбужденных молекул ничтожна). Сравнение интенсивности релеевской, стоксовой и антистоксовой линий приведено на рис. 68. [c.146]

    Спектры комбинационного рассеяния образуются, если вещество облучать монохроматическим светом, причем частота монохроматического света должна значительно отличаться от частоты ультрафиолетовых лучей, так как они поглощаются электронами. Обычно используют луч видимого света 2, например, синюю линию света ртутной лампы 4358А. Молекулы вещества поглощают энергию части лучей, необходимую для возбуждения колебательного и вращательного движения другая часть лучей проходит слои вещества без изменения. Поэтому в спектре наряду с линией возбуждающего светового луча го появляются линии более слабой интенсивности с меньшими частотами VI (стоксовы линии). Поглощенная энергия равна А = /1( о — [c.34]

    В таком случае имеет место комбинационное рассеяние. Как нетрудно показать, комбинируя формулы ( 1.194), ( 1.195) и ( 1.196), а также применяя простые тригонометрические преобразования, полный индуцированный момент будет содержать, кроме члена fгv . изменяющегося с частотой г о и являющегося причиной релеевского рассеяния, также и члены Xv -V g и pv ,+v изменяющиеся с частотами Vo — и Vo + Vкoл. Эти составляющие обусловливают появление комбинационного рассеяния, т. е. стоксовой, линии с частотой V = [c.256]

    Периодическое смещение электронов, участвующих в образовании связи, является причиной периодического изменения геометрии молекулы. Другими словами, появляется связь между колебательным движением электронов и ядер, т. е. движение электронов модулируется. Изменение положения атомов и атомных групп вызывает колебательное движение атомов и молекул. Энергия, расходующаяся на возбуждение этих колебаний, представляется падающим излучением. Поэтому наряду с линиями релеевского рассеяния Vst = vo наблкадают слабые парные линии npH Vo "vr. Разность волновых чисел Av = Vo — (vo Vr) соответствует волновым чис- ь-лам Vj определенных колебаний. Совокупность таких линий составляет спектр комбинационного рассеяния ра-ман-спектр). Наряду со стоксовыми линиями, характеризующимися более низкими волновыми числами (vq — Vp), в спектре комбинационного рассеяния появляются чрезвычайно слабые антистоксовы (-7о+ v ) линии, смещенные в коротковолновую область. Они возникают в том случае, если энергия колебательно-возбужденной молекулы суммируется с энергией первичного излучения (рис. 5.12,а). [c.221]

    Спектр КР, как правило, представляет собой колебат. спектр. В области малых значений v, могут проявляться переходы между вращат. уровнями (вращат. спектры КР), реже электронные переходы (электронные спектры КР). Т. обр., частоты рассеянного света являются комбинациями частоты возбуждающего света и колебат. и вращат. частот молекул. При обычной т-ре стоксовы линии значительно интенсивнее антистоксовых, поскольку б. ч. молекул находится в невозбужденном состоянии при повыщении т-ры интенсивность антистоксовых линий растет из-за частичного теплового заселения возбужденных колебат. состояний Е . Интенсивность стоксовых линий КР пропорциональна (Vq — V,) при Vq V3, (у,д-частота электронного перехода), а при Vg -> Узд резко возрастает (резонансное КР). Для каждой конкретной линии КР интенсивность-ф-ция поляризуемости молекул (а), в отличие от ИК поглощения, где интенсивность-ф-ция дипольного момента молекулы (ц). Значение наведенного дипольного момента определяется выражением [c.437]


    Спеир КР анализ1фуемого вещества получен с использованием излучения аргонового ионного лазера с длиной волны 488,0 нм. Линии КР были найдены при длинах волн 496,6, 498,5, 506, 5 и 522,0 нм. Рассчитайте волновые числа этих линий. Какова длина волны антистоксовой линии, соответствующей стоксовой линии при 498,5 нм  [c.361]


Смотреть страницы где упоминается термин Стоксовы линии: [c.273]    [c.147]    [c.147]    [c.170]    [c.22]    [c.23]    [c.23]    [c.76]    [c.180]    [c.180]    [c.92]    [c.267]    [c.268]    [c.437]    [c.612]    [c.18]    [c.112]    [c.297]   
Основы и применения фотохимии (1991) -- [ c.92 , c.137 ]

Химический энциклопедический словарь (1983) -- [ c.267 , c.268 ]

Физическая химия (1978) -- [ c.477 ]

Основы аналитической химии Часть 2 Изд.2 (2002) -- [ c.287 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.267 , c.268 ]

Современная аналитическая химия (1977) -- [ c.161 ]

Инструментальные методы химического анализа (1960) -- [ c.162 ]

Физические методы в неорганической химии (1967) -- [ c.220 ]

Инструментальные методы химического анализа (1960) -- [ c.162 ]

Инструментальные методы химического анализа (1989) -- [ c.168 ]

Руководство по аналитической химии (1975) -- [ c.221 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.573 ]

Химия Справочник (2000) -- [ c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Линия стоксова

Спектр стоксова линия

Спектры комбинационного рассеяния стоксовы линии

Стоксовы и антистоксовы линии



© 2025 chem21.info Реклама на сайте