Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геометрия молекулы

    Для анализа колебаний широко используются математические приемы,, которые применяются и для изучения колебаний молекул. Мы начнем с предположения, что геометрия молекулы и массы ее атомов известны, а амплитуды колебаний бесконечно малы, так что можно пренебречь ангармоничностью колебаний. Запишем уравнение для потенциальной и кинетической энергии молекулы как функции атомных масс, координат и сил, действующих между атомами. Формально эти уравнения имеют следующий вид  [c.296]


    Таким образом, с точки зрения молекулярной теории положительная свободная поверхностная энергия (т. е. поверхностное натяжение) обусловлена силами притяжения между молекулами, находящимися внутри жидкости и на ее поверхности. Величина поверхностного натяжения определяется межмолеку-лярными силами, геометрией молекул жидкости и числом атомов в них. Кроме того, на нее влияют свободная энергия меж-молекулярных сил, ориентация молекул в поверхностном слое, определяющая направление силовых полей, а при контакте двух жидкостей — еще и присутствие молекул одной жидкости во второй и химическое взаимодействие молекул обеих граничащих жидкостей [211]. [c.186]

    Гиллеспи P., Геометрия молекул. Пер. с англ.-М. Мир, 1975. [c.508]

    Чем определяется та или иная геометрия молекулы Существует ли какой-нибудь простой способ предсказания описанных выще (а также других) структур Как это ни покажется странным, на последний вопрос можно дать утвердительный ответ-такой способ был предложен в 1940 г. [c.490]

    Метод молекулярных орбиталей. Для приближенного представления вида функции основного состояния системы электронов молекулы существуют два метода, основанные на теории валентных связей (ВС) или на теории молекулярных орбиталей (МО). Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а потому отражают разные представления об основном строении молекулы. В методе ВС принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Метод ВС был разработан раньше метода МО. Он дает более наглядное представление о строении молекулы и поэтому его чаще применяют для качественного решения некоторых вопросов. В частности, метод ВС достаточно просто трактует геометрию молекулы. [c.23]

    Взаимосвязь между. дипольным моментом и геометрией молекулы [c.582]

    Здесь следовало бы взять в качестве ф и фа-гибридные АО бериллия, но для целей настоящего раздела это необязательно, поскольку мы здесь не претендуем на точное описание геометрии молекулы, [c.159]

    Информацию о строении вещества можно получить, исследуя его физические и химические свойства. В частности, с помощью физических методов исследования определяют основные параметры молекул — межъядерные расстояния, валентные углы и геометрию молекул. [c.42]

    Концепция гибридизации получила широкое распространение главным образом прн обсуждении сте-реохимических проблем. Однако не следует дум-ать, что именно характер гибридизации электронных облаков определяет геометрию молекулы. В действительности дело обстоит как раз наоборот — исходным моментом при определении типа гибридизации является известная пространственная симметрия молекулы, Когда же от данной молекулы (например, СН4) переходят к другим, гомологичным соединениям (скажем, насыщенным углеводородам) и утверждают, что вследствие яр -гибридизации электронных облаков атомов углерода его соседи должны находиться в тетраэдрических или близких к ним углах, то создается иллюзия, будто причиной такой геометрической структуры углеводородов является вр -гибридизация. На самом же деле в основе подобных рассуждений лежит предположение (очень часто оправдывающееся экспериментально) о сходстве геометрической структуры рассматриваемых молекул. [c.208]


    В учении о строении молекул исследуются геометрия молекул, внутримолекулярные движения и силы, связывающие атомы в молекуле. В экспериментальных исследованиях строения юлекул наибольшее применение получил метод молекулярно спектроскопии (включая радиоспектроскопию), широко используются также электрические, рентгенографические, магнитные и другие методы. [c.18]

    Sq и — параметры ориентационного порядка, определенные в [579]). Для вычисления абсолютных значений So и необходимо использовать все три уравнения для S( H), S( H) и S( 0), так как экспериментально определяются только абсолютные значения параметров анизотропии. Практически значения и вычисляются с большой степенью неопределенности [604], так как величина 5( Н) может содержать большой вклад, связанный с протонным обменом, а вид приближенных уравнений для S( H) и 5( Ю) зависит от геометрии молекулы воды вблизи гидрофильной поверхности и величины ц для нее. [c.235]

    Теперь атом Н имеет на своей валентной орбитали два электрона, подобно гелию, а у атома I восемь электронов, как у Хе. Льюис выдвинул следующий принцип атомы образуют химические связи в результате потери, присоединения или обобществления такого количества электронов, чтобы приобрести завершенную электронную конфигурацию атомов благородных газов. Тип образующейся связи-ионный или ковалентный-зависит от того, происходит ли перенос электронов или их обобществление. Валентность, проявляемая атомами, определяется пропорциями, в которых они должны объединяться, чтобы приобрести электронные конфигурации атомов благородных газов. Теория Льюиса объясняет тип связи и последовательность расположения атомов в молекулах. Однако она не позволяет объяснить геометрию молекул. [c.466]

    Вопрос о теоретическом расчете геометрии молекулы весьма актуален, так как в настоящее время далеко не для всех молекул ее можно определить экспериментально, особенно для короткоживущих радикалов. Единственный строгий путь предсказания равновесной конфигурации — это решение уравнения Шредингера в возможно высоком приближении аЬ initio. Однако из-за трудности неэмпирических расчетов часто пользуются различными способами определения конфигурации, не имеющими строгого теоретического обоснования. Так, для этого используется концепция гибридизации в методе ВС. Зная валентные возможности центрального атома, представляют, какие гибридные эквивалентные орбитали он может образовать, и по аналогии со строением изученных соединений с той же гибридизацией ожидают соответствующую равновесную конфигурацию  [c.103]

    В системах, имеющих одновременно и псевдоконтактный, и контактный вклады, пользуются тремя традиционными подходами. Если геометрия молекулы известна из рентгеноструктурного исследования монокристалла и если структура ее одна и та же в растворе и в твердом состоянии, а также если известна анизотропия восприимчивости , можно рассчитать [7] псевдоконтактный вклад. Рассчитав величину псевдоконтактного вклада, можно из уравнения (12.21), используя измеренную величину изотропного сдвига, определить контактный вклад. Рентгеноструктурные исследования и измерения восприимчивости монокристалла требуют и много времени, и больших материальных затрат. Эквивалентность структур в твердом состоянии и в растворе доказать очень трудно, и часто она лишь допускается. В благоприятных ситуациях значительные изменения в структуре можно установить с помощью спектральных методов. [c.174]

    Динамические расчеты проводились в классическом приближении в предположении линейной геометрии молекул. Для описания движения атомов трехатомной молекулы АВС использовался модельный потенциал вида [c.127]

    Дальнейшее развитие представления о механизме элементарного акта получили в работах Торнтона и сотр. [42—46 , на основе которых можно предсказать изменения в геометрии молекулы и активированного комплекса при введении различных заместителей. [c.29]

    Прочность связей и свойства новой (твердой) фазы зависят от молекулярной структуры, состава и геометрии молекул нефтяной системы, температуры, давления, длительности процесса и от других физико-химических факторов. Твердая фаза является неустойчивой и неравновесной системой, она склонна к дальнейшим химическим изменениям и к непрерывному изменению физико-химических свойств, в том числе и прочностных. [c.40]

    Остановимся на причинах появления максимумов эмульгирующей способности. Интересно, что для объяснения этого явления использованы те же физические предпосылки, что и при установлении типа эмульсий. В настоящее время нет единой точки зрения ни по тому, ни по другому вопросу. Все теории, посвященные данной проблеме, можно разделить на два класса 1) геометрические, рассматривающие тип образующейся эмульсии как функцию геометрии молекулы ПАВ 2) энергетические, связывающие эти явления со взаимодействием молекул ПАВ с жидкостями фаз (растворимость и т. д.). [c.419]

    В настоящее время широкое распространение получила так называемая система ГЛБ. Согласно этой системе, тип образующейся эмульсии объясняется не из геометрии молекулы ПАВ, а с помощью энергии взаимодействия ее с фазами в зависимости от соотношения растворимости в разных фазах. Но система ГЛБ базируется на положениях, которые не подтверждаются для многих систем, и не учитывает влияния геометрических особенностей молекул ПАВ, влияющих на тип эмульсии. [c.420]

    Так Kajv моменты инерции молекул большинства углеводородов не могут быть найдены при помощи исследования их спектров, для определения этих величин должен применяться другой способ. Если известна геометрия молекулы, например в результате электроне графических исследований, то моменты инерции молекулы могут быть вычислены. В некоторых случаях моменты инерции могут быть оценены благодаря тому, что линия связей и углы между связями в углеводородах одного типа практически не изменяются. [c.310]


    Частота колебания определяется геометрией молекулы, массадш атомов и силами, действующими между ними. Если в результате колебания изменяется дипольныг момент, будет иметь место взаимодействие с энергией излучения соответствующей частоты. Иными словами, будет [c.315]

    Иными словами, представления о химической связи между атомами, о геометрии молекулы, ее симметрии и топологии и многие другие имеют смысл только в рамках определенных приблил еиий, вообще говоря, не вытекающих из основных (или, как часто говорят, первых) принципов квантовой механики В свою очередь, выбор приближения определяется не только характером постановки решаемой задачи, особенностями рассматриваемой системы, а также соображениями физического и математического порядка, но учитывает (чаще всего, неявно) весь рациональный опыт исторического развития данной предметной области, причем последний фактор не менее важен, чем все остальные. [c.106]

    Именно поэтому в динамическои стереохимии — разделе этой науки, изучающем изменение геометрии молекул в ходе химиче> ских реакции, — уместно пользоваться лишь термином конформация и говорить об изменении конформации, а не о конформацион -ном переходе. Хотя, конечно, ничто нам не мешает рассматривать систему взаимодействующих молекул как одну псевдомолекулу и обсуждать ее конформеры. Другое дело, что в большинстве случаев, это нецелесообразно. [c.141]

    Более того, квантовомеханические расчеты электронной структуры молекулы метана показали, нто тетраэдрическая конфигурация этой молекулы отвечает наибольшей, по сравнению со всёми другими возможными для нее конфигурациями, электронной энергии. И только благодаря тому, что этой конфигурации соответствует минимум энергии отталкивания ядер, в результате чего полная энергия молекулы (равная сумме ее электронной и ядерной энергий) оказывается все же минимальной, связи С—Н в метане направлены в углы тетраэдра. Таким образом, геометрия молекулы не обусловлена данным типом гибридизации. Последняя лишь устанавливает соответствие между взаимным расположением ядер и пространственным распределением электронной плотности. Но это не единственная, и даже не главная в современной теории строения молекул, функция концепции гибридизации. [c.209]

    Существует еще один эффект, который оказывает влияние на электронную структуру комплекса и который мы должны рассмотреть перед тем, как перейти к обсуждению электронных спектров. Рассмотрим молекулу с неспаренным электроном, находящимся на дважды зырожденной орбиталг. например октаэдрический комплекс Си(П). Вспомните, что в резултгате искажения геометрии молекулы от наиболее симметричной (О,,) до, например, можно понизить энергию молекулы. [c.86]

    С помощью сдвигающих реагентов в принципе можно определять геометрию молекул в растворе [40]. Этот экспфимент обычно проводится в диапазоне быстрого обмена. Предполагают, что спектральные сдвиги протонного ЯМР, обусловленные СР, имеют по своей природе дипольный характер. В идеальном случае можно задаться структурой молекулы и рассчитать по уравнению (12.22) дипольные сдвиги для большого числа различных ядер исследуемой молекулы. Чтобы добиться соответствия расчетных и эксцфиментальных данных по сдвигу, меняют задаваемую структуру молекулы. Поскольку структура исследуемой молекулы и структура комплекса в растворе, как и величина и положение магнитного диполя металлического центра в комплексе, неизвестны, то в общей сложности система имеет восемь неизвестных. Что это за неизвестные, можно увидеть из рис. 12.10, где показан такой жесткий лиганд, как пиридин, связанный в комплекс с СР. Для определения ориентации молекулы относительно СР нужны четыре параметра 1) г—расстояние между металлом и донором 2) а — угол между связями металл — донорный атом и азот — орто-углерод 3) р—угол между плоскостью лиганда и магнитной плоскостью х, у металла 4) у — угол, характеризующий поворот плоскости молекулы лиганда относительно оси азот — пара-углерод. Кроме того, нужны два угла для определения ориентации магнитной оси относительно связи металл — [c.193]

    ПИ и СЭ рассчитывали по энергии высшей занятой и низшей свободной молекулярных орбиталей (МО) по программам АМРАС по методу РМЗ [5]. Расчеты щюводили с полной оптимизацией геометрии молекул. На основе известной теоремы Купманса ПИ и СЭ приближенно рассматриваются как энергии высшей занятой и низшей свободной орбиталей (в случае ПИ — с противоположным знаком). [c.270]

    Строение алканов. Атомные и молекулярные орбитали. Гибрида-зация орбиталей. Сигмб вязи и геометрия молекул.. Понятие о конформационном анализе. Способы изображения молекул. [c.194]

    Таким образом, определив при помощи метода МОХ распределение я-электронной плотности и зная геометрию молекулы, можно вычислить дипольный момент, обусловленный распределением я-элек-тронов. Расчеты по методу МОХ дают завышенные значения диполь-ного момента. [c.42]

    Возникшие ассоциаты продолжают расти до размеров, определяемых физико-химическими свойствами дисперсионной среды и дисперсной фазы, и затем коагулируют. Важное значение имеет геометрия молекул, составляющих дисперсную фазу (ассоциаты). Наиболее упорядоченная укладка в ассоциате будет в том случае, если молекулы полициклических ароматических углеводородов упорядочены в двумерной плоскости. В случае пространственной конфигурации мошекул ароматических углеводородов будут формироваться рыхлые бессистемные коагуляты. Образующиеся за счет сил межмолекулярного взаимодействия ассоциаты на более поздних стадиях подвергаются химическим превращениям. Появление ири этом сшивок между молекулами в кристаллите в дальнейшем сильно затрудняет их растворение, а на более глубоких стадиях делает его невозможным. [c.170]

    Среднестатистическая сдвинутость адсорбционного слоя внутрь фазы по сравнению с поверхностью раздела чистых жидкостей подтверждается исследованием энергетики процесса адсорбции в системах жидкость — жидкость [14]. Приведенное объяснение показывает влияние и растворимости, и геометрии молекул ПАВ на тип эмульсии. [c.421]

    При выборе конкретного ПАВ прежде всего необходпмо учесть тип эмульсии (М/В или В/М), который определяется и геометрией молекулы, и энергетикой ее взаимодействия с фазами.-Однако еще нет достаточно удовлетворительного математического описания этих явлений. Поэтому будем учитывать оба фактора как арифметическую сумму . [c.440]

    Для определения статистических сумм ггеобходимо знать молекулярные веса, моменты инерции и частоты колебаний исходных молекул и активированного комплекса. Так как молекулярный вес активированного комплекса равен сумме молекулярных весов участвующих в реакции частиц, то определение поступательных статистических сумм в выражении для константы скорости не представляет труда. Определение моментов инерции требует знания конфигурации исходных частиц и активированного комплекса. Конфигурация многих молекул в настоящее время хорошо известна в результате изучения геометрии молекул методами рентгеноструктурного анализа, электронографии и нейтронографии. Методов же изучения активированного комплекса в настояще- время не существует. Поэтому вращательные статистические ы для активированного комплекса можно вычислить лишь Определенных предположениях о строении активированного комплекса. Это иногда можно сделать с неплохой степенью точности, поскольку активированный комплекс является промежуточным состоянием между исходными частицами и частицами продуктов реакции. [c.69]

    Квантово-химические расчеты показали, что образование координационной связи с участием неподеленной электронной пары атома азота аминогруппы является маловероятным. Кроме того, в случаях, когда в молекуле нитрила имеется несолько нтрильных групп (тетра-(Р-цианэтил)этилендиамин, диэтаноламинопропионитрил), наиболее устойчивыми являются комплексы, в которых все нитрильные атомы азота участвуют в координации. Расчеты позволили установить геометрию молекул, вычислить теплоты образования, дипольные моменты, потенциалы ионизации, рассчитать длины и порядки связей, валентные углы. Некоторые результаты расчетов приведены в табл. 1. [c.60]

    Колебательные спектры также могут давать важные сведения о геометрии молекул достаточно упомянуть об открытом прп изученит. колебательных спектров явлении поворотной пзомерии. По колебательным спектрам определяются силы, связывающие атомы в молекуле, диполгные моме1[ты и поляризуемости связей и термодинамические функции вещества. [c.483]


Смотреть страницы где упоминается термин Геометрия молекулы: [c.187]    [c.492]    [c.134]    [c.166]    [c.193]    [c.167]    [c.206]    [c.207]    [c.42]    [c.129]   
Квантовая механика и квантовая химия (2001) -- [ c.349 ]

Квантовая механика и квантовая химия (2001) -- [ c.349 ]




ПОИСК







© 2025 chem21.info Реклама на сайте