Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возбуждение молекул

    При возбуждении молекулы в ней происходят сложные энергетические изменения (рис. 89) электроны переходят с одного уровня на другой, одновременно изменяется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейчатых спектров атомов. [c.144]


    Фотодиссоциация диоксида серы, выделяемого в атмосферу, невозможна, так как она может протекать лишь при длинах волн короче тех, которые достигают нижней атмосферы. Поэтому фотохимические превращения диоксида серы обусловлены реакциями его возбужденных молекул, образующихся при поглощении света в области 290—340 нм. [c.32]

    Образование электронно-возбужденных молекул при поглощении кванта энергии  [c.27]

    Для долгоживущих свободных радикалов, таких, как метастабильные, электронно возбужденные молекулы красителей [53] или триарилметилы [54], применимы более прямые методы измерения концентрации с использованием чувствительных весов Гюи. [c.99]

    М. Метод прерывистого освещения. Энергия активации, необходимая для инициирования так называемых термических реакций, приобретается разлагающейся молекулой в результате столкновений с другими молекулами. Однако реакции этого типа можно инициировать и при таких температурах, при которых их обычная ( термическая ) скорость очень мала. Энергия активации в подобных случаях получается за счет света (фотохимические реакции) и ионизирующих излучений (например, альфа-, бета-, гамма- или рентгеновских лучей) имеет место и сенсибилизация уже возбужденными молекулами (см. разд. V.43). [c.103]

    Недостатки этого приближения сильнее сказываются при увеличении возбуждения молекулы и амплитуды колебаний атомов. [c.185]

    РАСПАД ВОЗБУЖДЕННЫХ МОЛЕКУЛ [c.193]

    Спонтанное разложение возбужденных молекул. Потенциальная энергия [c.195]

    Гл. X. Распад возбужденных молекул [c.196]

    На рис. Х.4 показана схематическая гиперповерхность постоянной потенциальной энергии для критически возбужденной молекулы, состоящей иа N атомов и претерпевающей разложение. Эта гиперповерхность является т-мерной, где т = Ломаная линия (заключенная внутри поверх- [c.197]

    Здесь А й В обозначают возбужденные молекулы А и В с критической энергией Е. При этом А является любой формой активных частиц, которые могут возникнуть при активации молекул А при дезактивации возбужденных частиц А могут образоваться только молекулы А. Возбужденные молекулы В определяются аналогично . Эту схему можно представить в виде диаграммы потенциальной энергии, как показано на рис. XI. 1, где приведено сечение поверхности потенциальной энергии, соответствующее минимальным величинам 17 для различных величин Ь. Все состояния слева от о являются состояниями А или А, правее — В или В. Как следует из рис. XI.1, реакция эндотермична, так как минимум энергии для В располагается выше, чем минимум энергии для А. Разность этих двух энергий соответствует тепловому эффекту реакции А . [c.204]


    Возбужденная молекула, образующаяся при поглощении света, может участвовать в нескольких конкурирующих процессах.  [c.201]

    Функция распределения для возбужденных молекул [c.202]

    Здесь В — молекула, которая разлагается. В — возбужденная молекула. Стационарная концентрация В равна [c.202]

    С другой стороны, при низких давлениях, где время между столкновениями так велико, что каждая возбужденная молекула распадается прежде, чем она может дезактивироваться путем столкновения, получается зависимость [c.203]

    По форме это соотношение совпадает с выражением для средней скорости, которое выводится из классической модели [см. уравнение (Х.5.1)]. Хотя сама модель Слетера не приводит к простому решению, тот факт, что она согласуется по форме с простой квантовой моделью Райса — Рамспергера и Касселя, позволяет написать следующее выражение для средней скорости разложения критически возбужденной молекулы с энергией >  [c.219]

    Для того чтобы решить систему этих уравнений, можно пренебречь флуоресценцией и дезактивацией возбужденных молекул Вг2, так что удельная скорость реакции 1 = 2/а, где —среднее число фотонов, поглощенных 1 см в 1 сек. Удобно также допустить, что определенная доля атомов Вг, ударяющихся о стенку, захватывается стенкой, давая Вг2. В действительности же коэффициент рекомбинации на стенке должен, конечно, зависеть от стационарной концентрации атомов Вг, химической природы стенки, концентрации других примесей, которые могут влиять на абсорбцию атомов Вг, и т. д. [c.289]

    Это довольно сложная кинетическая схема, в которую входят три радикальных промежуточных соединения и одно соединение, а именно кетен, которое может достигать стационарного значения. Так как предполагается, что деструкции радикалов осуществляются по второму порядку, то невозможно уравнение для стационарных концентраций записать в явном виде. Если положить, что скорость этой реакции равна ф/ 1—х), а скорость реакции 2 равна ф/аЗ , где ф — часть возбужденных молекул ацетона, которая подвергается распаду, — среднее число квантов, поглощенных в 1 см за 1 сек, X — доля возбужденных молекул ацетона, которые распадаются по второму пути , тогда можно рассчитать отношение образования и деструк- [c.325]

    Выло найдено, что голубые пламена, характерные для горения углеводородов, обусловлены электронно-возбужденными молекулами СНдО. [c.414]

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]

    Процесс цепного окисления углеводородов можно представить состоящим из следующих стадий возбуждение молекул, зарождение активных центров, продолжение цепей, разветвление цепей и обрыв цепей. При газофазном окислении углеводородов в зоне высоких температур две первые стадии могут протекать слитно, в одном элементарном акте. По этой причине стадию возбуждения молекул часто не рассматривают в качестве самостоятельной стадии. При окислении жидких углеводородов, как показано далее, возбуждение молекул является одной из стадий, определяющих скорость процесса в целом. [c.24]

    Надежная количественная оценка скорости цепного окисления углеводородов затруднительна. Чтобы воспользоваться известными способами оценки скорости цепного окисления, необходимо детально изучить механизм цепного процесса и прежде всего механизм его наиболее медленных стадий — возбуждения молекул и зарождения цепей. [c.26]

    Такие термические цепи возникают вследствие неравномерного распределения значительных количеств энергии, выделяющихся при хлорировании (тепловой эффект реакции хлорирования достигает около 27 ккал/г-мол). Образующиеся в результате этого возбужденные молекулы сталкиваются до передачи их энергии стенке с другими молекулами и, следователгшо, являются источником активации, необходимой для протекания термичсгко цет он рслкцнн. [c.157]

    Для достижения максимальной скорости реакции сульфохлорирования, а также оптимального соотношения хлора и серы необходима наименьшая интенсивность падающего света. Усиление интенсивности света не имеет влияния на ход реакции. Ниже наименьшей интенсивности света наблюдаются замедление скорости реакции и ухудшение соотношения хлора и серы, а хлорирование в углеродной цепи снова усиливается. При одинаковой интенсивности свет более коротких волн дает более низкое соотношение хлора и серы, чем длинноволновый свет. Это благоприятное влияние на реакцию сульфохлорирования может объясняться непосредственным возбуждением молекулы 502 или промежуточным возникновением радикала К—502, тем более что по исследованиям Корнфельда и Веегмана [8] абсорбция 502 начинается [c.363]


    Причем роль катализатора выполняет металл электрода. Кобозев предположил, что в силу специфики электрохимического процесса, при котором адсорбированные атомы водорода высаживают принудительно током на любых точках к.атода (в том числе и на участках с малой теплотой адсорбции), наряду с образованием обычных молекул в продуктах электролиза возможно доявление колебательно возбужденных молекул водорода Н2 1 избыточным запасом энергии  [c.404]

    Тремя точками обозначены связи, обусловленные двумя я св. и одним гсразр-электроном, что отвечает порядку связи 0,5. Во второй формуле непарные гочки означают яраар-электроны. При возбуждении молекул О2 становится [c.310]

    Рже. х.4. Схематическое изображеиие движения в фазовом пространстве внутренних координат критически возбужденной молекулы, претерпевающей разложение. [c.197]

    Когда происходит химическая реакция, это распределение нарушается реакцией, и в общем можно ожидать, что стационарная концентрация возбужденных молекул будет ниже, чем при равновесии. Лиидеман [13] первым предложил схему, которая позволяет оценить влияние реакции на это распределение. Его схема включает конкуренцию двух путей исчезновения возбужденных молекул — химической реакции и дезактивации при столкновении  [c.202]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]

    Это зависит от относительной эффективности передачи энергии от возбужденной молекулы Оз к Од. В действительности при ра.зложении оаона такая энергетическая цепь пе наблгодается. [c.343]

    Вольман [82] высказал предположение, что в обратимой реакции синтеза О3 из О2, фотосенсибилизированного Нд, последовательность при 2537 А такова Hg - -02—>0 +Н8, за ней следует 0 - -02- 0з-)-0. Молекула 0 могла бы быть колебательновозбужденной молекулой в основном состоянии или электронновозбужденной метастабильной молекулой в состоянии 2 или же находиться в одном из более низко лежащих синглетных состояний. Вольман предполагает, что при 1849 А последовательность является такой Нд +02- 02 [32й1 4- Нд, за которой следует предиссоциация возбужденной молекулы О2 на два возбужденных атома [зр]0 в переходном состоянии. И в этом случае доказательства не являются прямыми. Последнее предположение противоречит цепному [c.352]

    N205)f представляет собой критически возбужденную молекулу N305 с энергией > Е, где Е = А 1,2- Если принять допущения, что КОз я N02 достигают температурного равновесия и что N03 и каждая молекула (N205) достигают стационарных состояний, тогда [c.357]

    Как было предложено Гейдоном [481, а затем доказано Уолшем [491, свет излучает возбужденная молекула углерода СО. Уолш показал, что дискретное испускание в области от 3250 до 6250 А вызывается возбужденными молекулами СО2. В работах [49а 1 сообщалось, что прп взрыве обнаружены полосатые спектры поглощения,-которые были приписаны возбунаден-ной СО. [c.396]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]


Смотреть страницы где упоминается термин Возбуждение молекул: [c.202]    [c.195]    [c.203]    [c.278]    [c.317]    [c.343]    [c.343]    [c.415]    [c.415]    [c.585]    [c.24]   
Смотреть главы в:

Механизм и кинетика радиационно-химических реакций Издание 2 -> Возбуждение молекул


Люминесцентный анализ (1961) -- [ c.41 , c.52 ]




ПОИСК







© 2025 chem21.info Реклама на сайте