Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия фотона

Таблица 7 Длины волн, волновые числа и энергии фотонов Таблица 7 <a href="/info/5221">Длины волн</a>, <a href="/info/4688">волновые числа</a> и энергии фотонов

    В табл. 7 длина волны света сопоставлена с энергией фотона. [c.133]

    Энергию фотонов можно выразить н электрон-вольтах  [c.452]

    Рентгеновские лучи обычно имеют длину волны от 1 до 10 А. Вычислите энергию фотонов с длиной волны 2 А, выразив ее в джоулях на фотон. Выразите ее в килоджоулях на моль и сравните с энергией простой углерод-углеродной связи, равной 347 кДж моль. Могут ли рентгеновские лучи вызывать химические реакции  [c.381]

    Диапазону световых волн от 700 до 200 нм соответствует энергия фотонов от 170 до 580 кДж/моль. Эта энергия сравнима с энергией связей органических соединений. Энергия простых С- С-связи составляет примерно 346 кДж/моль, О-0-связи-около 358 кДж/моль, С-Н-связи-около 408 кДж/моль и -N-связи-около 304 кДж/моль. Поэтому под действием света могут протекать реакции, в которых происходит разрыв ковалентных связей внутримолекулярные фотореакции, фотовосстановление и др. [12]. 177 [c.177]

    Рассчитайте энергию фотона, длина волны которого 5-10- м. [c.17]

    Рассмотрим снова, как и в примере 1, зеленый свет. Соотношение Е = к позволяет вычислить энергию фотона зеленого света. Определите эту энергию в килоджоулях. Сколько килоджоулей приходится на моль фотонов зеленого света  [c.339]

    Энергия фотона зеленого света [c.339]

    Чувствительным элементом извещателя пламени является счетчик фотонов СФ, регистрирующий ближний ультрафиолетовый спектр излучения. Принцип действия счетчиков основан на преобразовании электрической энергии фотонов, действующих на катод, в импульсы тока. [c.101]

    Поглощение -у-лучей в веществе происходит по одному из трех механизмов. Если энергия у вантов составляет около 10 кэв (Я>1,5 А), то при взаимодействии фотона с атомом наблюдается фотоэлектрический эффект. Кинетическая энергия выбитого электрона равна энергии поглощенного фотона за вычетом энергии, необходимой для удаления электрона из атома. Фотон при этом полностью поглощается и, следовательно, такой процесс не меняет энергии фотонов проходящего пучка, а [c.259]

    Энергия фотона оказывается почти столь же велика  [c.359]

    Вычислите энергию фотонов, соответствующих радиоволнам на частоте 1000 килогерц (1 кГц = 10 Гц), выразив ее в джоулях на фотон и килоджоулях на моль. Какова длина волны таких фотонов Как соотносится их энергия с энергией простой углерод-углеродной связи Могут ли радиоволны вызывать химические реакции  [c.381]

    Приравнивая энергию фотона hv к полному запасу его энергии тс и принимая во внимание, что V = сД, получаем соотношение [c.17]

    Комптоновское рассеяние является главным эффектом дЛя широкой области энергий (1-5 МэВ для свинца, 0,1-15 МэВ для алюминия) при энергии выше 0,5 МэВ комптоновское поглощение приблизительно обратно пропорционально энергии фотонов. В радиационной химии полимеров, где используются энергии частиц около 1 МэВ, комптоновское рассеяние является основным процессом. [c.44]


    При больших энергиях фотонов в кулоновском поле ядер образуются электронно-позитронные пары. Возникающей паре передается энергия фотона за вычетом энергии покоя пары, равной 2 = =1,022 МэВ. Указанное значение энергии является порогом для этого процесса. Сечение процесса образования пар медленно растет в области энергий от 1,02 до 4 МэВ, а затем возрастает в логарифмической зависимости от энергии. Нестабильность позитрона в среде приводит к его аннигиляции с испусканием в большинстве случаев двух фотонов с энергией 0,511 МэВ. Сечение образования пар пропорционально 2 + 2, где первый член отвечает ядерным процессам, а второй - процессам в поле электронов. [c.45]

    В зависимости от порядкового номера элемента и энергии фотонов преобладает один из трех рассмотренных эффектов взаимодействия. Это показано на рис. 2.5 в виде трех областей, причем линии, разграничивающие области, соответствуют для данных энергии К и порядковых номеров элементов 2 равной вероятности эффектов, преобладающих в пограничных областях [33]. [c.45]

    Орбиталь 2а1 лежит очень низко, энергия фотонов в этом эксперименте (< 21,2 эВ) недостаточна для отрыва с нее электронов. [c.96]

    Решение. Энергия фотона ( ) связана с частотой излучения (v) известным соотношением Е — Н, где h — постоянная Планка, равная 6,63-10 Дж-с. Частота колебаний и длина волны связаны соотношением " = - 1 где с — скорость к — длина волны излучения  [c.16]

    Если фотоэффект свидетельствует об определенной дискретной энергии кванта (фотона), то комптон-эффект доказывает наличие импульса фотона Если энергия фотона велика сравнительно с энергией связи электрона, то обычно электрон не поглощает всей энергии кванта. [c.425]

    Все электронные переходы, в том числе и переходы на локальные уровни типа 5 и 3—4 сопровождаются электронно-фонон-ным взаимодействием, в результате которого часть электронной энергии превращается в вибрационную энергию, т. е. в теплоту, нагревающую твердое тело выше первоначальной температуры, а часть излучается в виде квантов сниженной частоты, по сравнению с частотой поглощаемого излучения Поэтому, когда ширина запрещенной зоны не слишком сильно превосходит 3,1 эВ, т. е. энергию фотонов самого коротковолнового видимого света, полоса электромагнитного излучения данного вещества может находиться в области спектра видимого излучения. При более значительной ширине запрещенной зоны может иметь место испускание только ультрафиолетового излучения. [c.122]

    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]

    Луч света, по современным представлениям, представляет собой электромагнитное излучение, которое характеризуется следующими параметрами длиной волны л, частотой V, массой и энергией фотона е. Возникновение его обусловлено переходом электронов в атоме с орбиталей, более удаленных от ядра, на орбитали, расположенные ближе к ядру. Этот перескок электронов сопровождается уменьшением энергии на некоторую величину, т. е. ее излучением. Энергия, потерянная атомом, и есть энергия электромагнитных колебаний. Испускание атомом электромагнитных колебаний, так же как и их поглощение, происходит не непрерывно, а целыми неделимыми порциями — квантами. Величина кванта света или, как его еще называют, фотона выражается следующим равенством  [c.173]

    Как показывает опыт, энергия обычной химической связи в большинстве случаев составляет 209,3—418,7 кДж/моль. Таким образом, на химическую реакцию может оказать влияние только излучение, имеющее энергию фотонов не ниже указанных величин. Фотоны, энергия которых лежит в пределах этого интервала, носят название фотохимических. [c.174]

    Микроволновая спектроскопия. В микроволновой области фотоны имеют длины волн от 30 до 0,06 см (V от ЫО до 5-10 1 секг ) и соответственно энергии — от 4 до 2000 дж1моль. В этой области спектра энергия фотона мала, поэтому возникают изменения только во вращательном движении, что дает возможность вычислять моменты инерции молекул. Поглощение энергии происходит при определенных частотах, которые и используются для определения моментов инерции газообразных молекул. [c.67]


    В самом деле, электрон в металле связан с атомами металла, так что для его вырывания необходима затрата определенной энергии. Если фотон обладает нужным запасом энергии (а энергия фотона определяется частотой излучения ), то электрон будет вырван, фотоэффект будет наблюдаться. В процессе взаимодействия с металлом фотон полностью отдает свою энергию электрону, потому что дробиться на части фотон не может. Энергия фотона будет частично израсходована па разрыв связи электрона с металлом, частично на сообщение электрону кинетической энергии движения. Поэтому максимальная кинетическая энергия выбитого из металла электрона не может быть больше разности между энергией фотона и энергией связи электрона с атомами металла. Следовательно, при увеличении числа фотонов, падающих па поверхность металла в единицу времени (т. е. при повышении интенсивности освещения), будет увеличиваться только число вырываемых из металла электронов, что приведет к возрастанию фототока, но энергия каждого электрона возрастать не будет. Если же энергия фотона [c.42]

    Колебательные спектры, как и вращательные, лежат в ИК-области. Однако их можно изучать, пользуясь явлением комбинационного рассеивания (КРС) видимого света. КРС-спектро-скопия основана на рассеивании падающего на вещество света с изменением его частоты. Это происходит либо вследствие потери падающим на вещество фотоном части энергии с соответствующим переходом поглощающей молекулы на более высокий колебательный уровень, либо вследствие перехода возбужденной молекулы на основной колебательный уровень с передачей энергии фотону. В результате частота рассеиваемого света уменьшается или увеличивается на величину, отвечающую разности энергий между основным и возбужденным колебательными уровнями. В спектре КРС кроме линии, соответствующей обычно.му упругому рассеиванию и имеющей такую же частоту, как и падающий свет, появляются симметрично расположенные по отношению к ней линии других частот. [c.52]

    Возбуждение молекулы из основного состояния 5о в триплетные и представляет собой сильно запрещенный процесс. Поэтому в зависимости от энергии фотона молекула может переходить или в 51-, или в а-состояния (на схеме стрелки а и а ). Теперь, когда молекула получила извне энергию излучения, следует рассмотреть вопрос о судьбе энергии электронного возбуждения. [c.278]

    Кинетическая энергия вылетающего электрона меньше энергии фотона. Остаток энергии представлен в виде рассеянного при этом процессе фотона. [c.425]

    Посмотрим теперь, каким образом теория кристаллического поля объясняет наблюдаемую окраску комплексов переходных металлов. Оказывается, разность энергий между двумя группами -орбиталей, обозначаемая символом Д (так называемая энергия расщепления кристаллическим полем), имеет величину такого же порядка, что и энергия фотона видимого света. Поэтому комплексы переходных металлов могут поглощать свет в видимой области спектра поглощаемый фотон возбуждает электрон с нижнего энергетического уровн /-орбиталей на более высокий уровень. Поясним все сказанное на примере иона Т1(Н20)е . Поскольку у титана(П1) только один 3 /-электрон, комплекс Т1(Н20)5 имеет в видимой области спектра шшь один пик поглощения (рис. 23.20). Максимум интенсивности поглощения приходится на длину волны 510 нм (3,9-10 Дж/молекула). Свет с этой длиной волны заставляет -э.тектрон переместиться с нижнего энергетического уровня -орбиталей на верхний эне]эгетиче-ский уровень, как это схематически показано на рис. 23.26. [c.393]

    Приравнивая энергию фотона Ау к полному запасу энергии фотона ПК и принимая во внимание, что получаем [c.19]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Рамановское испускание растворителя (комбинационное рассеяние). При комбинационном рассеянии света длина волны отличается от длины волны возбуждающего света. Это происходит потому, что при рассеянии света часть энергии пучка может перейти в энергию колебаний или, если облучаемая молекула находится в колебательно-возбужденном состоянии, то она может отдать колебательную энергию фотону. Идентифицировать полосы комбинационного рассеяния нетрудно, поскольку при изменении длины волпы возбуждающего света они всегда сдвинуты на одно и то же расстояние (в щкале волновых чисел) от линии возбуждения. Для уменьпюния рамаиовского рассеяния используют отсекающие фильтры или иа пути пучка флуоресценции помещают поляризатор, что уменьшает интенсивность рамановских полос, поскольку рамановское испускание достаточно поляризовано. [c.73]

    Как показано в табл. 4.4 и 4.5, энергия фотона в спектральной области 250<Я,<360 нм больше энергии диссоциации С—С-связей. Высокоэнергетический хвост солнечного излучения простирается до Я = 300 нм. Поэтому разрыв цепи под действием ультрафиолетового или солнечного света энергетически возможен. В ближней ультрафиолетовой области квантовая производительность разрывов цепей в незащищенных стеклообразных полимерах достигает 10- —60-10 [209Ь]. [c.320]

    Действие излучений разных видов зависит от энергии фотонов (от их волновых чисел) (табл. XXIX. 1). [c.339]

    Решен-ие. 1) Энергия фотона, разрывающего связь С1—С1, рааыа  [c.27]

    Настройка источника монохроматического уизлучения для получения мессбауэровских спектров может достигаться за счет эффекта Допплера. Дело в том, что у(ист> включает как составляющую энергию этого эффекта (см. выше зависимость Еу от Ео и от скорости движения ядра), и ее можно в некотором интервале варьировать, двигая с какой-то скоростью v источник относительного поглощающего вещества. Это движение модулирует частоту укван-тов, и, когда энергия фотона Ey = hv становится равной т(погл)> он поглощается ядром поглотителя, т. е. происходит ЯГР. Чем больше скорость движения источника в направлении поглотителя ( + ц),тем больше Еу. Наблюдаемые в мессбауэровской спектроскопии разности энергии А т= т(ист)— г(погл) соответствуют относительным скоростям движения порядка миллиметра в секунду, которые легко осуществляются и точно измеряются. [c.117]

    В 1905 г. Эйнштейн предположил, что в промежутке между актами излучения и поглощения порция энергии hv существует в виде кванта энергии — фотона. Фотоны пе имеют спина и не подчиняются запрету Паули и, следовательно, должны быть рассмотрены на основе статистики Бозе—Эйнштейна. [c.235]


Смотреть страницы где упоминается термин Энергия фотона: [c.65]    [c.107]    [c.91]    [c.57]    [c.262]    [c.135]    [c.7]    [c.187]    [c.173]    [c.107]    [c.21]   
Физическая химия (1987) -- [ c.545 ]

Учебник общей химии 1963 (0) -- [ c.440 ]

Химия полимеров (1965) -- [ c.91 ]

Физическая химия Том 1 Издание 5 (1944) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Быстрая каналированная частица как двумерный (одномерный) релятивистский атом Спонтанное излучение фотонов при радиационных переходах между зонами поперечной энергии каналированных частиц

Газ фотонный

Длины волн и энергии фотонов Ма-линий

Длины волн, энергии фотонов и критические энергии возбуждения К-линий

Квант энергии Фотон

Квантовый выход влияние энергии фотона

Новожилов. Присоединение четыреххлористого углерода к гептену 1 при инициировании фотонами с различ- .. нон энергией

Предварительные замечания. 23. Кванты энергии. 24. Световые кванты или фотоны. 25. Фотоэлектрический эффект За кон Эйнштейна. 27. Эффект Комптона. 28. Дуализм волн и корпускул. 29. Теория де-Бройля. 30. Квантовая механика Шредингера Соотношение неопределенности. 32. Статистический характер квантовой механики. 33. Нулевая энергия. s Строение атома

Фотон энергия, определение

Фотоны

Фотоны высокой энергии

Энергия активации фотона

Энергия молекулы фотоном



© 2025 chem21.info Реклама на сайте