Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монохроматическое рассеяние

    Возможность непосредственно наблюдать вращательные и колебательные переходы в области видимого света основывается на открытии Раманом и Мандельштамом явления комбинационного рассеяния света. При прохождении монохроматического света через вещество в спектре рассеянного света наряду с линией излучения источника света появляются также линии с более высокими и более низкими частотами. Эта разность частот относительно основной частоты источника света соответствует изменению энергии при колебательных переходах. Основное достоинство спектроскопии комбинационного рассеяния (КР) состоит в том, что с ее помощью можно точно и просто определять собственные частоты колебаний молекулы. При этом можно различить валентные и деформационные колебания. Последние возможны у многоатомных нелинейных молекул. Так, например, молекула воды НгО имеет два валентных колебания [c.68]


    Принцип этого метода определения молекулярной массы состоит в измерении углового распределения рассеянного раствором полимера монохроматического света. [c.50]

    Светорассеивающий прибор содержит в качестве источника света лампу со средним или высоким давлением ртутных паров, которая дает параллельный монохроматический луч с помощью стеклянных монохроматических фильтров. Такой луч проходит через поляризатор и попадает на ячейку с образцом. Интенсивность рассеянного излучения измеряется при различных углах фотоумножителем, и результаты регистрируются высокочувствительным гальванометром или записывающей лентой. Весь прибор заключен в светонепроницаемый ящик. Кроме того, он снабжен световой ловушкой для поглощения луча, выходящего из ячейки с образцом, с тем, чтобы исключить случайное попадание света из фотоумножителя. Все внутренние поверхности приборов не должны отражать свет, а пыль необходимо полностью удалять. [c.151]

    Пусть среда освещается монохроматическим светом с квантами /lVQ, которые поглощаются молекулами среды, вследствие чего они сами становятся источником рассеянного света той же частоты т. е. будет классическое рассеяние света по Релею. Часть энергии падающих квантов /lVo может расходоваться и на возбуждение колебаний ядер внутри молекулы частоты V, и тогда в рассеянном свете появляются кванты меньшей величины /гvд — Ну. Если квант /lVo поглощается молекулой, в которой колебательный уровень уже был возбужден, то энергия этого возбуждения может добавиться к энергии кванта падающего света, и вследствие этого молекула излучает также кванты /гvo + /гv. В результате этого явления в спектре рассеяния наряду с основными линиями частоты V,, появляются симметрично расположенные по обеим их сторонам линии комбинационного рассеяния Vц+v. Линии спектра, которым соответствуют частоты Vo —V, называются стоксовыми, линии с частотами 0 + V — антистоксовыми. [c.74]

    На рис. 2.19 представлена полученная на серийном приборе ДФС-8 фотография спектра Не — Ne-лазера, содержащего одну линию 6328 А. Сама линия на снимке значительно передержана, чтобы крылья инструментального контура, обусловленные рассеянием и духами, были хорошо видны. Если контур исследуемой линии поглощения много уже контура монохроматического рассеяния, то учет влияния последнего производится совершенно аналогично тому, как это было изложено для неселективного рассеяния. В таких случаях трудно отделить влияние различных видов рассеяния, поэтому обычно определяют полную абсолютную и полную относительную эффективность рассеяния. Для их определения можно рекомендовать исследование узких линий поглощения, в центре которых истинная остаточная интенсивность заведомо близка к нулю. Тогда отсчет прибора при установке его на центр линии будет равен суммарной абсолютной эффективности всех видов рассеяния, включая и духи решетки. [c.348]


    При исследовании очень широких линий поглощения, занимающих область спектра, сравнимую с шириной структуры духов и контура монохроматического рассеяния, поправки на эти виды рассеяния вводятся, как [c.348]

    Монохроматическое рассеяние. Кроме неселективного рассеяния света в приборе большое значение имеет монохроматическое рассеяние. Эта часть рассеянного света распределяется по спектру неравномерно. Она концентрируется вблизи нерассеянного потока той же длины волны, образуя протяженные крылья инструментального контура прибора. [c.339]

    На рис. 13.12 представлена полученная на серийном приборе ДФС-8 фотография спектра Не — Ке-лазера, содержащего одну линию 6328 А. Сама линия на снимке значительно передержана, чтобы крылья инструментального контура, обусловленные рассеянием и духами, были хорошо видны. Если контур исследуемой линии поглощения много уже контура монохроматического рассеяния, то учет влияния последнего производится совершенно [c.340]

Рис. 13.12. Спектральная линия Не — Ке-лазера (X = 6328 А), зарегистрированная с передержкой на спектрографе ДФС-8. Видны духи и крылья контура монохроматического рассеяния. Рис. 13.12. <a href="/info/4804">Спектральная линия</a> Не — Ке-лазера (X = 6328 А), зарегистрированная с передержкой на спектрографе ДФС-8. Видны духи и крылья контура монохроматического рассеяния.
    Приборы для получения спектров комбинационного рассеяния. Для получения спектра комбинационного рассеяния вещество подвергается действию монохроматического излучения. Обычно применяют ртутные дуги различных типов с соответствующими фильтрами. Если исследовать [c.314]

    На рис. V, 1 изображена зависимость от угла интенсивности рассеивания монохроматического рентгеновского излучения жидким аргоном, являющимся примером простейшей одноатомной жидкости. Кривая рассеяния имеет экстремумы и повторяет в размытом виде кривую рассеяния для твердого аргона. [c.161]

    В качестве источника света в установке для комбинационного рассеяния используют ртутно-кварцевые лампы ПРК-2 со светофильтрами для выделения монохроматического луча (синего с Х= = 435,8 нм или фиолетового с =404,7 нм). В установку входят также держатель образца и спектральный регистрирующий прибор. [c.160]

    Таким образом, наведенный дипольный момент молекулы меняется во времени. Вынужденное колебание молекулярного диполя является причиной рассеяния света. Периодическое смещение электронов по отношению к атомам вызывает излучение света с той же частотой. Как видно из уравнения (1,55) эти коле-, бания диполя можно разложить на три слагаемых. Слагаемое 1 описывает колебание диполя с частотой, равной частоте СО) монохроматического света, которым освещалась молекула. Слагаемые [c.17]

    Широко используются для исследования структуры молекул и спектры комбинационного рассеяния (КР-спектры). Если через прозрачное вещество в кювете пропускать параллельный пучок света, то некоторая его часть рассеивается во всех направлениях. Если источник света монохроматический с частотой V, то в спектре рассеяния обнаруживается частота ч, равная частоте V. Этот результат вытекает как из квантовой, так и из классической теории рассеяния. Рассеяние без изменения частоты и соответственно без изменения энергии молекулы называют классическим, релеевским (по имени физика [c.145]

    Альтернативой белому свету может быть источник монохроматического света, и отраженный свет может измеряться фотоэлектрическими средствами. Тогда размер частиц можно рассчитать из выходного сигнала [683]. В данном случае проблема заключается в том, что, если аэрозоль состоит из частиц с различными показателями рефракции, необходимо сравнить интенсивность рассеянного света, поляризованного в двух плоскостях [559—561]. На практике [c.98]

    Поликристаллические (или порошкообразные) образцы имеют много семейств параллельных плоскостей. Если семейство параллельных плоскостей решетки вращать вокруг монохроматического пучка рентгеновских лучей, то рассеянный луч образует с первичным угол 20 и опишет в пространстве конус. При вращении поликристаллического образца для каждого семейства плоскостей образуются свои конусы дифракции в соответствии с углами скольжения и числом порядков отражения. [c.153]

    Рассеяние света жидкостями вообще и растворами полимеров в частности обусловлено флуктуациями плотности вследствие теплового движения частиц. Флуктуации плотности раствора приводят к оптической неоднородности среды. Появляются статистические флуктуационные образования, объемы которых малы по сравнению с величиной длины волны падающего света, взятой в третьей степени (Х ). Такие образования обусловливают возникновение осмотических сил, стремящихся к уравниванию свойств системы в каждой точке раствора. Степень рассеяния монохроматического света раствором (мутность) -г связана с осмотическим давлением реального раствора следующим соотношением, известным как уравнение Дебая  [c.50]


    Таким образом, наведенный дипольный момент молекулы меняется во времени. Вынужденное колебание молекулярного диполя является причиной рассеяния света. Периодическое смещение электронов по отношению к атомам вызывает излучение света с той же частотой. Как видно из уравнения (1,55) эти коле-, бания диполя можно разложить на три слагаемых. Слагаемое 1 описывает колебание диполя с частотой, равной частоте сш монохроматического света, которым освещалась молекула. Слагаемые И и 1П описывают колебания диполя с измененными частотами с (о) -Ь ю ) и с (о) — со ). Следовательно, в рассеянном свете будет наблюдаться три частоты с (ш), с(СО +Шс) и с(С0 "С0р). [c.17]

    Обратимся теперь к спектрам комбинационного рассеяния. Если вещество (газ, жидкость, кристалл) освещать параллельным пучком монохроматического света, т. е. света, которому в спектре соответствует единственная линия , то под прямым углом к проходящему свету [c.253]

    ИСТОЧНИК монохроматического сиета 2 — линза 3 — кювета с веществом 4 — рассеянный свет 5 — спектрограф 6 — кассета с фотопластинкой [c.254]

    Монохроматическое рассеяние происходит, главным образом, после спектрального разложения потока в камерной части прибора, при выходе из диспергирующего элемента и в самом диспергирующем элементе. Свет рассеивается на запыленных поверхностях и неоднородностях призм, объективов, на молекулах газа, заполняющего спектральный прибор, и на взвешенных в нем частицах пыли. Форма крыльев инструментального контура определяется суммарной индикатрисой всех этих видов рассеяния. Нерегулярные погрешности штрихов дифракционной решетки также приводят к появлению протяженных крыльев инструментального контура. Регулярно повторяющиеся особенности штрихов приводят к появлению линейчатой структуры вблизи максимума исследуемой линии (духи Роуланда их рассматривают как своебразное монохроматическое рассеяние света прибором). [c.348]

    Монохроматическое рассеяние происходит, главным образом, после спектральпого разложения потока в камерной части прибора, цри выходе из диспергирующего элемента и в самом диспергирующем элементе. Свет [c.339]

    При исследовании очень широких линий поглощения, занимающих область спектра, сравнимую с шириной структуры духов и контура монохроматического рассеяния, поправки на эти виды рассеяния вводятся, как поправки на инструментальные искажения. В этом случае измеренная эквивалентная ширина линии поглощения не будет отличаться от истинной. Линии такой ширины исследуются редко, исключение составляют линии Н и К в солнечном фраунгоферовом спектре. Принципиальное отличие этих двух крайних случаев соотношения ширины контура рассеяния и контура, линии заключается в следующем. В первом случае, когда контур линии узок, на оставшийся непоглощенным в контуре линии световой поток накладываются духи и рассеянный свет от невозмущенного континуума во втором — центральная часть искажается мало, так как духи и рассеянный свет от невозмущенного континуума не достают до нее. [c.340]

    Покажите, в каком случае и во сколько раз интенсивность рассеянного дисперсной системой света больше при освещении синим светом (Х1 = 410 нм) или красным светом ( 2 = 630 нм). Светорасс .чние проис.ходит в соответствии с уравнением Рэлея, и интенсивности падающих монохроматических пучков света равны. [c.128]

    ОСратный поток возникает вследствие рассеяния, т. е, оп-тическ ого явления, заключающегося в изменении первоначального распространения монохроматического света без изменения длины его волны. Рассеяние обуслоЕ(лено разностью показателей преломления сплошной и дисперсной фаз, в результате чего на границе их раздела возникают преломление луча света и его отражение от поверхности раздела. [c.99]

    Представим, что монохроматический источник света А расположен, как показано на рис. XVIII. 21, так что свет от него надает на кювету К с исследуемым веществом, причем через щель В в спектрограф может поступать лишь излучение, рассеянное молекулами исследуемого вещества, а не непо- [c.551]

    Спектроскопия комбинационного рассеяния (КР) — это раздел оптической спектроскопии, изучающий рассеяние монохроматического света, которое сопровождается изменением его частоты. Комбинационное рассеяние было открыто одновременно и независимо советскими физиками Л. И. Мандельштамом и Г. С. Ландсбергом и индийскими физиками В. Раманом и С. Кришнаном. Причина комбинационного рассеяния — неупругое соударение кванта света с молекулой. При этом часть энергии может уйти на возбуждение молекулы, которая перейдет на более высокий уровень. Тогда энергия рассеянного света будет меньше энергии падающего света на величину энергии перехода. В спектре рассеянного света кроме линии падающего света с волновым числом vo появляются линии с волновым числом Vlстоксовы линии). Энергия перехода характеризуется разностью Av,=vo —VI. Если молекула находилась в возбужденном состоянии, то при соударении с квантом света она может отдать ему свою энергию возбуждения и перейти в основное состояние. Тогда энергия рассеянного излучения возрастает и в [c.247]

    Спектры комбинационного рассеяния образуются, если вещество облучать монохроматическим светом, причем частота монохроматического света должна значительно отличаться от частоты ультрафиолетовых лучей, так как они поглощаются электронами. Обычно используют луч видимого света 2, например, синюю линию света ртутной лампы 4358А. Молекулы вещества поглощают энергию части лучей, необходимую для возбуждения колебательного и вращательного движения другая часть лучей проходит слои вещества без изменения. Поэтому в спектре наряду с линией возбуждающего светового луча го появляются линии более слабой интенсивности с меньшими частотами VI (стоксовы линии). Поглощенная энергия равна А = /1( о — [c.34]

    Стал применяться метод комбинационного рассеяния, разработанный Г. С. Ландсбергом и Л. И. Мендельштамом в СССР и С. Раманом в Индии. Этот метод заключается в следующем. Если просвечивать какое-либо вещество (в данном случае нефть или ее фракцию) монохроматическим, т. е. имеющим строго определенную длину волны, светом, то на фотопластинке, кроме спектральных линий источника света, обнаруживаются другие линии вследствие рассеяния света веществом, а также линии, характеризующие состав последнего. [c.219]

    В любом спектрофотометре к монохроматическому излучению, падающему на детектор, примешивается случайный свет с со-верщенно отличными длинами волн. Это и свет, проходящий через щели корпуса прибора, и свет от рассеяния на пылинках, осевших па различных частях монохроматора, и т. п. Для наиболее полного отделения монохроматического излучения от случайного используются двойные монохроматоры. [c.21]

    Если облучать какое-либо соединение монохроматическим светом с частотой о, то в спектре рассеянного излучения помимо рэ-леевской полосы с частотой о можно обнаружить значительно бо- [c.221]

    Выше отмечалось, что осмотическое давление является характеристикой изменения химического потенциала раствора и обусловлено активностью растворенного вещества 0°. Можно показать, что мутность системы увеличивается при увеличении активности растворенных частиц. Иными словами, с повышением сА возрастает доля рассеянного света. Интенсивность рассеянного света /в, наблюдаемого под углбм 0 к падающему монохроматическому лучу, называется оптической анизотропией растворенных частиц полимера и изменяется при изменении угла наблюдения. Оптическая анизотропия этих частиц состоит в том, что величина интенсивности рассеяния неодинакова вдоль различных осей молекулярного клубка. Зависимость интенсивности рассеянного света от угла наблюдения рассеянного луча называется соотношением (числом) Рэлея, или приведенной интенсивностью  [c.51]

    Сущность комбинационного рассеяния заключается в том, что при пропускании через исследуемое вещество монохроматического луча в спектре рассеянного света появляются дополнительные симметрично расположенные линии, соответствующие частотам с меньшими и большими длинами волн, чем частота падающего света. Разность частот падающего и рассеянного света Av = vnaA—Vkom6 не зависит от частоты падающего света и определяется структурой вещества, является его характеристикой. [c.159]

    Абсолютные значения интенсивности падающего и рассеянного света можно найти только с помощью сложных приборов (тин-дальметров), и полученные результаты требуют введения ряда поправок. Кроме того, при определении абсолютных значений интенсивности света надо пользоваться для освещения монохроматическим светом. Поэтому гораздо большее распространение получили относительные методы нефелометрии, в которых эти трудности в значительной мере отсутствуют. [c.51]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]


Смотреть страницы где упоминается термин Монохроматическое рассеяние: [c.63]    [c.340]    [c.62]    [c.178]    [c.265]    [c.26]    [c.212]    [c.17]    [c.37]    [c.203]   
Техника и практика спектроскопии (1976) -- [ c.347 , c.348 ]

Техника и практика спектроскопии (1972) -- [ c.339 , c.340 ]




ПОИСК







© 2025 chem21.info Реклама на сайте