Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотокатализ фотодесорбция

    ФОТОКАТАЛИЗ И ФОТОДЕСОРБЦИЯ ПОД ДЕЙСТВИЕМ ВИДИМОГО И УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ [c.250]

    Относительные концентрации электронов и дырок в окисле можно изменить путем облучения в области основного поглощения твердого тела. Используя зонную схему, можно представить, что поглощенный квант возбуждает электрон валентной зоны, который перескакивает через запрещенный участок, отделяющий ее от зоны проводимости наличие свободного электрона в зоне проводимости и дырки, свободно передвигающейся в валентной зоне, проявляется в случае приложения электрического поля как фотопроводимость. Если электрон и дырка образуют возбужденное состояние, оставаясь связанными вместе в виде экситона, то фотопроводимости не наблюдается, пока какое-нибудь дополнительное воздействие не приведет к диссоциации экситона. Поскольку электроны и дырки возникают в результате поглощения света или у-лучей, то можно ожидать — при условии правильности идей о роли электронов и дырок как реагентов при адсорбции и катализе, — что облучение будет стимулировать фотоадсорбцию , фотодесорбцию и фотокатализ точно так же, как оно вызывает фотопроводимость. Ввиду того что после прекращения возбуждающего облучения фотопроводимость очень быстро исчезает из-за рекомбинации электронов и дырок, можно полагать, что фотоадсорбция и родственные явления будут наблюдаться только в процессе облучения. Донорные или акцепторные центры в окисле, обусловленные, например, несте-хиометричностью, должны играть важную роль в определении природы и величины поверхностных фотоэффектов вследствие их способности избирательно захватывать электроны или дырки, а также из-за того, что вызываемое ими нарушение периодичности решетки может привести к поглощению за пределами области основного поглощения. [c.353]


    Фотосенсибилизирующее действие суспензий окиси цинка щироко изучалось в течение ряда лет, поскольку оно имело существенное значение в производстве перекиси водорода, но вопросу фотосенсибилизации окисью цинка в сухом состоянии уделялось очень мало внимания. Простейщим примером фотокатализа является равновесная реакция между изотопами кислорода, О2 + О2 20 0 , так как она включает только диссоциативную адсорбцию кислорода и ассоциативную десорбцию. При предварительном исследовании этой реакции [48] было установлено, что для окиси цинка, которая способствует фотодесорбции кислорода, облучение снижает скорость изотопного обмена. С другой стороны, для окиси цинка, способствующей фотоадсорбции кислорода, облучение увеличивает скорость установления равновесия. Эти результаты указывают на то, что адсорбция кислорода определяет скорость реакции на окиси цинка, по крайней мере при низких температурах. Они представляют значительный интерес, хотя и не свидетельствуют однозначно, что диссоциированные частицы фотоактивны, так как изменение концентрации О оадс)- под воздействием облучения будет также влиять на концентрацию диссоциированных частиц (например, 0(адс) и О адс)), если все они находятся в равновесии. [c.359]

    Проявлялся при работе со смесями, богатыми окисью углерода. Однако механизмы для отмеченных двух серий опытов в разных условиях почти наверняка различны. Эксперименты с фильтрами показали, что в фотокатализе активен свет с длиной волны между 400 и 450 ммк, т. е. в области более длинных волн, чем при обычно принятой границе поглощения 385 ммк. Теренин и Солоницын [113] показали, что то же самое имеет место и для фотодесорбции кислорода, для которой они проследили за уменьщением фотоактивности до 500 ммк. Известно, что присутствие в избытке цинка, так же как подъем температуры [104], приводит к расширению границ поглощения, но причина распространения фотоактивности на видимую область в случае этих порошкообразных образцов окиси цинка пока непонятна. Мы склонны объяснить наличием избыточного цинка тот факт, что фотокатализ, так же как и адсорбционные фотоэффекты, более заметно выражен в случае окиси цинка с добавками лития, чем в случае окиси цинка без добавок или с добавками хрома. Следует упомянуть, что, согласно Ритчи и Калверту [124], прокаленная закись меди, присутствующая в виде тонкого слоя на металлической меди, также проявляет фотокатализ в окислении СО, если производится облучение ультрафиолетовым светом при 25°. Эти авторы отмечают, что добавление серы или сурьмы с образованием твердого раствора приводит к повыщению проводимости окисла, но к уменьшению фотоэффектов, хотя причина выбора именно этих добавок неясна. [c.361]


    Эта модель наиболее правдоподобна и, вероятно, действительно может стимулировать дальнейшее развитие работ в этом направлении однако она не лишена недостатков. Ионгепье и Скейт [141] повторили работу, выполненную Хабером и Стоуном, и сообщили об удовлетворительном согласии полученных ими результатов с данными предыдущих исследователей в той части, которая касается опытных данных. Однако их интерпретация очень отличается от объяснения Хабера и Стоуна наиболее серьезная критика заключается в том, что Хабер и Стоун не делали никаких допущений о передаче заряда и изменениях валентности иона никеля, происходящих при десорбции (нейтрального) кислорода. Более того, согласно Ионгепье и Скейту, непрерывный переход от Он- к Г -симметрии, во время которого волновая функция будет сохранять свою симметрию, невозможен. Эти авторы считают, что для полного объяснения всех деталей фотодесорбции и, возможно, фотокатализа необходимо применять более сложную теоретическую модель, использующую представления метода молекулярных орбиталей. [c.254]


Смотреть страницы где упоминается термин Фотокатализ фотодесорбция: [c.7]   
Кинетика и катализ (1963) -- [ c.244 ]




ПОИСК







© 2025 chem21.info Реклама на сайте