Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремния зона валентная

    Следует иметь в виду, что конфигурация энергетических зон очень сложна. Это видно из схем энергетических зон кремния и германия, (рис. 34). Минимум зоны проводимости, как мы видим, ни для кремния, ни для германия не совпадает с максимумом валентной зоны, который находится в центре зоны, причем зоны проводимости в этих двух кристаллах смещены от центра вдоль разных направлений. Именно поэтому на кривой зависимости ширины запрещенной зоны от состава твердого раствора германия в кремнии наблюдается довольно резкий перелом (рис. 35). [c.107]


    Согласно зонной теории полупроводников в полупроводнике имеется два рода носителей тока электроны в зоне проводимости и дырки в валентной зоне. В чистом (собственном) полупроводнике, например в чистом германии или кремнии, число электронов Па в зоне проводимости равно числу дырок ро в валентной зоне  [c.139]

    Кристаллический кремний имеет такую же структуру, как и алмаз. Следовательно, в кристалле кремния валентная зона укомплектована полностью. Однако ширина запрещенной зоны в этом случае составляет всего SE = 1,12 эВ. Следовательно, при небольшом возбуждении валентные электроны могут переходить в зону проводимости, т. е. кремний — полупроводник. [c.117]

    При наличии в полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дырочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве примеси имеются атомы мышьяка (45 4рЗ). При образовании связей с окружающими атомами кремния атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора 2 2р ) приводит к валентной ненасыщенности атомов 51, т. е. усиливает у полупроводника дырочную проводимость. [c.118]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    Электропроводимость кристалла зависит от разности энергетических уровней валентной зоны и зоны проводимости, или, как говорят, от ширины запрещенной зоны. У полупроводников с неширокой запрещенной зоной перевод электронов в зону проводимости может происходить при освещении (явление фотопроводимости). Запрещенная зона у кремния составляет А =1,1 эВ. Кремний освещается светом с у = 5-10 с (желтый свет). Возникнет ли проводимость  [c.69]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]


    Кристаллический кремний имеет такую же структуру, как и алмаз. Следовательно, в кристалле кремния валентная зона укомплектована полностью. Однако ширина запрещенной зоны в этом случае составляет всего АЕ=, 2 эв. Следовательно, при небольшом возбуждении [c.149]

    У алмаза электроны атомов углерода заполняют валентную зону. Перевод электронов в зону проводимости требует высоких энергий — ширина запрещенной зоны составляет А = 5,7 эВ, поэтому алмаз —диэлектрик (хотя по ряду других свойств его относят к полупроводникам). Кремний имеет структуру алмаза, и у него также заполнена валентная зона, но вследствие энергетической близости зоны проводимости и валентной зоны (Д =1,1 эВ) кремний проявляет свойства полупроводника. У графита валентная зона, содержащая 2р-негибридные электроны, и зона проводимости перекрываются, и эта модификация углерода, не являясь металлом, хорошо проводит электрический ток. [c.183]

    В полупроводниках ширина запрещенной зоны невелика это означает, что для перевода электронов из валентной зоны в зону проводимости требуется невысокая энергия, для обеспечения которой достаточно нагревания или освещения вещества. Так, при действии одного кванта света один электрон в решетке кремния переходит в зону проводимости, а вместо него в валентной зоне образуется одна положительно заряженная (относительно электронов) дырка. [c.185]

    Если же ширина запрещенной зоны относительно невелика, то при сообщении твердому телу определенного количества энергии часть его электронов может переброситься из полностью заполненной валентной зоны в зону проводимости и принять участие в переносе тока. Подобные вещества называют собственными полупроводниками. Так, у типичных собственных полупроводников германия и кремния ширина запрещенной зоны при ОК соответственно составляет 0,75 и 1,21 эВ (73 и 137 кДж/моль). [c.85]

    Беспримесный кремний с идеальной кристаллической структурой вблизи абсолютного нуля должен быть изолятором. Полностью укомплектованная валентная зона и вакантная зона проводимости разделены энергетическим зазором (Д = 1,21 эВ). Валентная зона представляет собой систему очень близко расположенных энергетических уровней Зр-электронов атомов кремния, составляющих кристалл. Зона проводимости — аналогичная совокупность Зй(-электронных состояний. При повышении температуры отде.иьные парноэлектронные связи нарушаются. Поглощая тепловую энергию, некоторые электроны нарушенных связей переходят в зону проводимости. В результате кремний обнаруживает собственную проводи- [c.200]

    Кристаллы некоторых элементов, например кремния и германия, отличаются тем, что связь между составляющими их атомами имеет частично ковалентный характер. Поэтому в таких кристаллах электроны из валентной зоны не могут легко переходить в зону проводимости, как в металлах. Между этими двумя зонами существует запрещенная зона, через которую электроны должны перескочить , чтобы попасть в зону проводимости. Такие скачки в подобных твердых телах, которые называются полупроводниками, могут осуществляться лишь в результате некоторого возбуждения, вызываемого, например, облучением светом. При этом происходит разрыв ковалентной связи между соседними атомами и освобождаются электроны. Именно эти электроны переходят в зону проводимости и обеспечивают электропроводность. Выше уже упоминалось, что ковалентная [c.164]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах [c.80]

    Промежуточное положение между металлами и непроводниками электрического тока ( изоляторами) занимают полупроводники (рис. 111-65). Электронами у них заполнены все подуровни валентной зоны, но запрещенная зона ( ) настолько узка, что перевод части электронов в зону проводимости требует сравнительно небольшой затраты энергии (например, для кремния—1,10 эв, а для германия — 0,75 эв). Следовательно, само по себе вещество является непроводником, но более или менее легко превращается в проводник под влиянием некоторых внешних воздействий (усиления электрического поля, нагревания, освещения). По устранении таких воздействий электроны возвращаются на низший энергетический уровень и вещество вновь становится непроводником. [c.112]

    Кристаллы кремния имеют структуру алмаза, но атомы 5г обладают З -орбиталями, энергетически близкими к Зр-орбиталям. Поэтому зона проводимости у кремния располагается ближе к валентной зоне (рис. 28, б), полностью укомплектованной электронами, как и у алмаза. При этом Л составляет только 1,12 эВ, и валентные электроны при небольшом возбуждении могут переходить в зону проводимости. В результате кристалл кремния способен проводить электрический ток. [c.75]

    Полупроводники имеют такую же зонную структуру как изоляторы, и при 7 = 0 К ведут себя точно так же, т. е. не проводят электрический ток. Однако ширина запрещенной зоны у них относительно невелика, и при тепловом возбуждении заметное число электронов попадает из заполненной валентной зоны в пустую до этого (при О К) зону проводимости (см. рис. 7.6, в). При повышении температуры число таких электронов и как следствие электропроводность увеличиваются. Типичными полупроводниками являются упоминавшиеся выше кремний, германий, серое олово, имеющие структуру алмаза, но узкую запрещенную зону. [c.137]


    Если заместить атом кремния в кристаллической решетке на элемент III группы (В, А1, Ga, In), имеющий на один валентный электрон меньше, то механизм возбуждения электрической проводимости будет иным (рис. 133, а, б). Атом бора образует три ковалентные связи с соседними атомами кремния за счет собственных электронов. Четвертая ковалентная связь в невозбужденном кристалле ( 0К) сформироваться не может, вследствие чего атом бора в решетке не имеет устойчивой электронной конфигурации (октета). При нагревании связи между атомами кремния ослабляются и становится возможным переход электрона от одного из соседних атомов кремния к бору с образованием четвертой ковалентной связи (пунктирная стрелка на рис. 133, а). Для такого перехода требуется затратить некоторую энергию АЕа, которая значительно меньше энергии АЕ, необходимой для перехода электрона в зону проводимости. [c.315]

    Несмотря на ограниченную применимость зонной теории, она позволяет судить о возможности изменения характера проводимости в зависимости от внешних условий (давления и температуры). С точки зрения зонной теории основной критерий полупроводимости — это отсутствие перекрывания валентной зоны и зоны проводимости, т. е. наличие зоны запрещенных энергий АЕ (см. рис. 129). Если создать условия, обеспечивающие сближение атомов кремния на расстояние, меньшее Го (д,о Гр), то, как видно из рис. 129, 35/зЗ-гибридная валентная зона и 45-зона проводимости перекрываются и при этом кремний должен обладать металлическими свойствами. Эти условия можно реализовать при всестороннем сжатии под высоким давлением, когда рыхлая тетраэдрическая структура полупроводникового кремния переходит в плотноупакованную структуру металлического типа. Давления, при которых возможен такой переход, как правило, весьма высоки (10 н-10 МПа). Так, при сжатии красной модификации фосфора (изолятор) под давлением 1,2-10 МПа наблюдается переход в более плотную полупроводниковую модификацию (черный фосфор) с шириной запрещенной зоны 0,33 эВ. Дальнейшее сжатие (2,0-10 МПа) приводит к появлению металлической проводимости в черном фосфоре. Переход от рыхлых структур к плотноупакованным металлическим сопровождается уменьшением энтропии аналогично тому, как это происходит при кристаллизации. Напротив, при переходе от плотной упаковки к более рыхлой структуре энтропия возрастает, поскольку увеличиваются амплитуда колебаний атомов и связанная с этим неопределенность положения их в узлах кристаллической решетки. Это эквивалентно увеличению неупорядоченности в кристалле (А5>0). Такой переход реализуется, например, при нагре- [c.320]

    Некоторые вещества при низких температурах обладают слабой проводимостью, возрастающей с ростом температуры. Это — полупроводники , для которых валентная зона заполнена, а незаселенная зона проводимости очень близка. Например, для кремния или германия ширина запрещенной зоны составляет от 1,1 до 0,72 эВ. При повышении температуры электроны валентной зоны перескакивают через запрещенную зону и достигают энергетического уровня, расположенного в зоне проводимости тогда под действием электрического поля эти электроны смогут перемещаться (рис. 75). Число возбужденных электронов, которые совершают этот энергетический скачок, растет с температурой. В то же время высшие (верхние) энергетические уровни валентной.зоны, освобождающиеся при уходе возбужденных электронов, могу/быть заняты электронами с низкой [c.119]

    Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон. разделенных запретными зонами. Как правило, если электроны образуют в атоме или молекуле законченную группу, то при объединении их в твердое или жидкое тело создаются зоны, все уровни которых заполнены, поэтому такие вещества будут обладать при абсолютном нуле свойствами изоляторов [48, стр. П71. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, а-олова, соединений типа А В , А В , С5 каждый атом связан единичными валентными связями с четырьмя ближайшими соседями, так что вокруг него образуется законченная группа электронов 5 р и валентная зона оказывается заполненной. [c.235]

    Рассмотрим примеры влияния на проводимость германия и кремния примесей замещения. Если в кристаллическую решетку их ввести атом сурьмы или другого элемента V группы, то он, став на место атома германия (или кремния) в узле решетки, образует валентные связи с четырьмя соседними атомами германия, расположенными по вершинам окружающего его тетраэдра. Так как у элементов V группы во внешней оболочке 5 валентных электронов, то один из них будет избыточным и не примет участие в образовании связей. Такой электрон оказывается слабо связанным со своим атомом в кристалле чтобы его отделить от атома и перевести в междоузлие, нужно затратить мало энергии. В зонной модели это значит, что для перевода такого электрона в зону проводимости необходимо затратить гораздо меньше энергии, чем для перевода электрона с потолка валентной зоны до нижнего края зоны проводимости А . Значит, уровни, на которых будут находиться такие электроны, должны располагаться в запрещенной зоне вблизи от дна зоны проводимости (на уровне на рис. 73,6). [c.239]

    В книге изложены основы химии полупроводников, включая представления о зонах валентной, проводимости, природе химической связи, нарушении стехиометрического состава и фазовых свойствах полупроводников, а также физико-химический анализ полупроводниковых систем. Описаны методы получения поли- и монокристаллов полупроводниковых материалов, их химические, физико-химические, зласгрические и оптические свойства. Наряду с элементарными по гу-проводш1ками (германием, кремнием и др.) подробно исследуются многочисленные бинарные полупроводниковые соединения, а такж некристаллические полупроводники (стеклообразные и жидкие). 05-суждены современные методы очистки и контроля чистоты полупроводниковых материалов, а также рассмотрены- процессы травления полупроводников. [c.2]

    При наличии В полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дь[рочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве нримсси имеются атом[,1 мьпиьяка (4.s 4p ), При образовании связей с окружаю1и,ими атомами кремния As Sp ) атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора (2s 2p ) приводит к валентной ненасыщенности атомов Si, т, е. усиливает у полупроводника дырочную проводимость (рис. 69). В зависимости от преобладания того или иного вида проводимости различают полупроводники л-типа и полупроводники /)-ти1га. [c.109]

    Однако реальные полупроводники всегда имеют примеси, которые существенно влияют на характер электрической проводимости, в этом случае называемой примесной. Примеси бывают донорные и акцепторные. Донорные примеси имеют на валентной электронной оболочке большее число электронов, чем их число на валентной электронной оболочке атома основного элемента полупроводника. Например, примеси атомов элементов V или VI главных подгрупп периодической системы в кристаллической решетке кремния (IV главная подгруппа) будут донорными. В зонной структуре полупроводника появляются дополнительные электроны проводимости. Если атом примеси содержит меньше валентных электронов, чем атом основного элемента, то полупроводник содержит в валентной зоне дополнительные свободные МО, на которые могут переходить валентные электроны. Такие примеси называются акцепторными, они приводят к появлению дополнительных дырок проводимости. По отношению к кремнию такими примесями будут элементы III главной подгруппы. Полупроводники с преобладающим содержанием донорных примесей называются полупроводниками с электронной проводимостью или п-типа. Если же преобладают примеси акцепторные, то полупроводники называются полупроводниками с дырочной проводимостью или р-типа. Для получения примесных полупроводников полупроводники, полученные специальными кристаллофизическими методами в сверхчистом состоянии, легируются элементами акцепторами или донорами электронов в микродозах, не превышающих 10 %. Примеси резко изменяют собственную электрическую проводимость полупроводников, поскольку количество носителей заряда, поставляемых ими обычно больше, чем их число в чистом полу-прово,цнике. Так, чистый кремний имеет удельное электрическое сопротивление электронной проводимости около 150-10 Ом-м, дырочной проводимости в.4 раза, электронной проводимости после легирования фосфором и дырочной проводимости после легирования бором — в 20 раз меньше. [c.636]

    В кристалле следующего элемента П1 периода — кремния — особенности расщепления энергетических уровней на зоны и их перекрывания отличаются от зонной структуры металлов (рис. 129). При образовании кристаллической решетки, начиная с некоторого межатомного расстояния г г >Го), наблюдается, чр"-гиб-ридизация электронных состояний атомов, что приводит в процессе расщепления уровней не просто к перекрыванию 35- и Зр-зон, а к полному их слиянию с возникновением единой 5р -гибридной валентной зоны, в которой максимально возможное количество электронов составляет 8М. В кристаллическом кремнии каждый атом образует тетраэдрические парно-электро шые насыщен 1ые ковалентные связи, достраивая свою валентную оболочку до 01 те-та. Такпм образом, в валентной зоне кремния все 8/У состояний оказываются занятыми. [c.310]

    При переходе электрона к атому бора последний заряжается отрицательно, а вблизи атома кремния, откуда ушел электрон, локализуется дырка. Примеси, ведущие себя в кремнии подобно бору, называются акцепторами. Уровень энергии акцепторного атома располагается внутри зоны запрещенных энергий вблизи потолка валентной зоны и отделен от последней энергетическим зазором Д а (энергией активации акцептора) (рис. 133, б). Возбуждение электрической проводимости связано с захватом валентного электрона кремния акцепторной примесью и появлением дырки в валентной зоне. При этом электроны в зоне проводимости отсутствуют. При приложении внешнего электрического поля дырки в валентной зоне перемещаются за счет скачкообразного перехода электронов, как это происходит в собственном полупроводнике. Полупроводник, легированный акцепторной примесью, обладает только дырочной проводимостью и называется полупроводником р-типа (от positive — положительный). Электрическая проводимость описывается уравнением [c.315]

    Если вводить в кристаллическую решетку германия (кремния) атом галлия или другого элемента 11IA подгруппы, то у атома замещающей примеси не хватит одного электрона для осуществления четырех нормальных связей с соседними атомами германия. Одна из связей будет незаполненной (одноэлектронной), но атом галлия и смежный с ним атом германия будут электронейтральными. Однако при небольшом возбуждении электрон из какой-либо нормальной соседней связи между атомами германия может перейти в место незаполненной связи. Тогда у атома галлия появится отрицательный заряд, а где-то вблизи возникнет дырка (рис. 74). Таким легированием германия (кремния) элементами IIIA подгруппы можно повышать концентрацию дырок, которые станут основными носителями подвижных зарядов, а электроны — неосновными. Так как энергия возникновения дырки вблизи акцепторной примеси Д а тоже порядка сотых долей электрон-вольта, то появление галлия в решетке германия как примеси замещения, по-видимому, приводит к появлению локального уровня Ец вблизи верхнего края валентной зоны (рис. 74,6). Уже при невысокой температуре электроны из валентной зоны переходят на этот акцепторный уровень оставляя дырку в валентной зоне. Полупроводники с избытком дырок (с акцепторными примесями) называются дырочными или р-типа полупроводниками (от лат. positive — положительный). [c.240]


Смотреть страницы где упоминается термин Кремния зона валентная: [c.78]    [c.159]    [c.261]    [c.104]    [c.111]    [c.150]    [c.280]    [c.297]    [c.280]    [c.519]    [c.113]    [c.198]    [c.314]    [c.274]    [c.237]    [c.242]   
Неорганическая химия (1989) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Зона валентная

Зонная зона валентная



© 2025 chem21.info Реклама на сайте