Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение полосы, граница

    Успешно также применяется метод нарушенного полного внутреннего отражения (НПВО), который позволяет записывать ИК-спектры для любых растворов, в том числе и водных. Физическая сущность метода при падении света на границу раздела двух сред А и В (рис. 76) с показателями преломления п и п.2 под углом больше критического происходит полное внутреннее отражение, если П1>П2. В области отражения луч частично проникает в оптически менее плотную среду на глубину, которая пропорциональна длине волны света и зависит также от угла падения луча и от величины критического угла. Если при изменении длины волны преломляющегося света изменяется разница между и П2 (что происходит в областях полос поглощения вещества В), то наблюдается изменение иптепсивности отраженного луча. Такие изменения можно записать на обычном ИК-спектрометре, снабженном приставкой НПВО, и получить спектр, близкий к обычному ИК-спектру пропускания вещества В. Основное различие состоит в зависимости оптической плотности полосы от места ее нахождения в спектре, так как с увеличением длины волны увеличивается и длина оптического пути в веществе В подобные искажения спектра могут быть скорректированы. В качестве рабочего тела А используют кристаллы из хлорида серебра, германия, бромнд-иодида таллия и других веществ. Для повышения чувствительности метода применяют многократное отражение луча от поверхности ра , дсла. [c.208]


    В рентгеновском спектре поглощения каждому электронному уровню (К, 1, 1ц, 111 и т. д.) соответствует свой край поглощения (низкочастотная граница полосы). [c.277]

    Инфракрасная спектроскопия (ИКС) — раздел спектроскопии, охватывающий длинноволновую область спектра (>700 нм за красной границей видимого спектра). По инфракрасны.ч спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. По числу н положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрографы. [c.57]

    Многочисленные эксперименты подтверждают изменение структуры воды в поверхностных пленках. Так, методом ИК-спектрометрии на кварце установлена определяющая роль поверхностных водородных связей, искажающих сетку Н-связей, существующую в объеме воды . Исследование адсорбционных слоев на пакетах кварцевых пластин тем же методом показало сдвиг максимума полосы поглощения, интерпретируемый как усиление интенсивности Н-связей в слоях воды толщиной 2—4 нм. Полученные результаты хорошо согласуются в отношении толщины пленок к с эллипсометрическими измерениями. Значения Н возрастали от 4 до 5,3 нм при р ро 1 с уменьшением краевого угла 0, т. е. с ростом гидрофильности кварца наоборот, при гидрофобизации поверхности кварца (триметил-хлорсиланом) толщина пленки становилась соизмеримой с ошибкой опыта (0,3 нм). Другие эллипсометрические исследования адсорбционных слоев воды на различных твердых поверхностях показали, что толщина их 10 нм и также связана с величиной краевого угла. Многочисленные исследования граничных слоев, моделью которых являются пленки, различными методами (гл. XI. 1) приводят к близким оценкам толщины слоев с измененной структурой, однако для таких слоев, постепенно переходящих в жидкую фазу, при отсутствии физической границы раздела оценка толщины может сильно варьировать в зависимости от метода (см. раздел У.1). Интересно отметить, что с повышением температуры до 70 °С толщина поверхностных пленок резко уменьшается это указывает на существенную роль Н-связей, нарушающихся вследствие усиления теплового движения молекул воды. [c.115]


    Электронные спектры несопряженных систем, В спектрах соединений, в молекулах которых отсутствуют мезомерные эффекты, можно наблюдать полосы поглощения, соответствующие отдельным электронным переходам. В насыщенных углеводородах, как известно, встречаются только а-связи. Поэтому эти соединения поглощают в вакуумной ультрафиолетовой области при частотах выше 5-10 см (например, СаНа при 74 ООО см" - 135 нм). Поскольку я-электронные состояния возбуждаются легче, изолированная двойная связь этилена проявляет себя в полосе поглощения на границе вакуумного ультрафиолета при частоте примерно 55 000 см- - ( 180 нм). Насыщенные соединения с гетероатомами поглощают при несколько меньших волновых числах, чем обычные насыщенные углеводороды. Энергия [c.232]

    Абсорбционная характеристика 2-(2"-гидрокси-5 -метилфенил) бензотриазола с его интенсивной абсорбционной способностью и резким спадом поглощения к границе видимой области идеальна. При рассмотрении спектра поглощения УФ-абсорбера с точки зрения оценки его возможностей как светостабилизатора помимо положения длинноволновой границы необходимо также принимать во внимание структуру полосы в УФ-области. [c.139]

    Молекулярный спектр бывает и более сложным. Непосредственно перед границей сплошной области поглощения полосы перестают быть дискретными (исчезает вращательная структура), делаясь диффузными (рис. 166). Иногда возникшие диффузные полосы перед началом сплошной области поглощения восстанавливают дискретную структуру, указывающую на наличие вращательных переходов (рис. 16в). В некоторых случаях молекулярные спектры при всех частотах носят диффузный характер, а иногда они похожи на линейчатые атомные спектры. Эти частные случаи спектров и причины их возникновения будут рассмотрены ниже. [c.78]

    Зависимость от частоты, представленная на рис. 1.3, имеет вид колоколообразной кривой с довольно резко выраженным максимумом на частоте уо. Эта кривая носит название контура линии поглощения. Поскольку границы полосы частот Ду неопределенны, шириной линии называют условно расстояние между точками, для которых значение к равно половине максимального к макс Аналогичный вид имеет и контур линии испускания, если на рис. 1.3 откладывать по оси ординат вместо величину т.е. относительную интенсивность излучения, [c.24]

    Спектрограммы адсорбционных слоев и полиэфирных пленок, полученные на различных стадиях старения образцов в процессе ультрафиолетового облучения, свидетельствуют о том, что характер процессов, протекающих в адсорбционных слоях и пленках, одинаков. Однако скорость этих процессов существенно различна и зависит от прочности взаимодействия на границе полимер — твердое тело, определяющей степень ориентации и плотность упаковки структурных элементов в пограничных слоях. С увеличением продолжительности облучения изменяются интенсивность и полуширина поглощения полосы, относящейся к валентным колебаниям карбонильных групп полиэфира и гидроксильных групп поверхности аэросила, участвующих в химическом взаимодействии с образованием водородных связей. Уменьшение интенсивности полосы поглощения карбонильных групп и появление на определенной стадии облучения свободных гидроксильных групп на поверхности аэросила яв- [c.25]

    При корректной постановке задачи радиационного теплообмена необходимо принимать во внимание зависимость оптических свойств среды от частоты излучения [236. Для этой цели можно использовать модель спектральных полос [236]. Согласно данной модели коэффициенты поглощения, а также свойства поглощения (отражения) границ и все оптико-геометрические инварианты излучения предполагаются постоянными в пределах каждой частотной полосы А у.  [c.388]

    Рассчитайте энергию диссоциации Вг2 (кДж/моль), если коротковолновая граница сходимости полос в электронном спектре поглощения наблюдается при 19 575 см-, а энергия возбуждения одного атома брома равна 7318-10-23 Дж. [c.8]

    Обращает на себя внимание также то обстоятельство, что в системе "атмосфера - подстилающая поверхность" циркулирует большее количество энергии, чем приходит от Солнца. Это происходит из-за так называемого парникового эффекта, обусловленного присутствием в воздухе молекул, поглощающих восходящее ИК-излучение. Главным поглотителем теплового излучения Солнца и земной поверхности служит вода, присутствующая в атмосфере в виде паров и облаков (мощные облака при поглощении и обратной эмиссии тепловой радиации действуют примерно как абсолютно черные тела). Колебательно-вращательные полосы в спектре паров воды обуславливают почти полное поглощение радиации с длинами волн менее 7,6 мкм, а вращательные полосы блокируют интервал спектра с длинами волн более 17 мкм. Между этими границами, а также в диапазоне 3,5-4,5 мкм, находятся окна прозрачности в спектре поглощения водяного пара. [c.78]


    Каждый электронный переход вызывает изменение к леба1ель-ного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбуждениый и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также Умакс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы Во (рис. XXIX. 5). [c.346]

    Так как для реальных молекул возможны любые переходы между колебательными уровнями, то в спектре наряду с основной линией частоты V, соответствующей переходу -> ь наблюдаются также дополнительные линии с кратными частотами 2у, Зу и т. д. (так.называемые обертоны), соответствующие переходам Ыз, -> з и т. д. Переходы на высокие уровни энергии маловероятны, поэтому интенсивности обертонов по мере роста быстро падают. По интенсивности и положению полос поглощения в ИК-спектре определяют и и О, а далее из уравнения (111.6) вычисляют собственные частоты колебаний у ол-Величина О, входящая в коэффициент ангармоничности х, находится по схождению спектральных полос (граница спектра Утах см. рис. 14, б). Область сплошного поглощения начинается с той части спектра, которая соответствует переходу щ итах и поглощению кванта предельной величины кУтах. Если возможно четкое определение границы между непрерывной и дискретной областями спектра, то действительная энергия диссоциации определяется с достаточной точностью соотнвше-нием  [c.45]

    Определяется она по изме 1ению сопротивления с ростом температуры или оптическими методами (край полосы поглощения, длинноволновая граница фотопроводимости). Значение Eg зависит от температуры и давления эта зависимость определяется коэффициентами ./.= йЕ /йТ и ар = dEg/dP (коэффициенты изменения ширины запрещенной зоны с изменением температуры и давления соответственно). [c.341]

    Теория приводит к выводу, что в случае хлористых соединений щелочных металлов оптическое поглощение в области второй полосы собственного поглощения, представляющей границу серии, должно привести к образованию свободных фотоэлектронов и возникновению соответствующего фототока. По данным Фергюсона [22] в кристаллах Na l действительно обнаруживается фотопроводимость при поглощении кристаллом света, соответствующего спектральной области второй полосы собственного поглощения. [c.13]

    СЛ0ЖП011 функцией волнового числа со. Однако для наших целей достаточно получить приближенную оценку спектрального показателя поглощения вблизи границы полосы путем применения лоренцовского распределения [c.321]

    Граница поглощения полосы переноса заряда в чистых расплавленных галогенидах была измерена Мольво [136] и Сандхеймом и Гринбергом [138]. Полосы поглощения ионов 1 и Вг , растворенных в расплавленных хлоридах, связанные с переносом заряда, изучались Гринбергом и Сандхеймом [137]. Молярный коэффициент погашения для этих полос оказался неожиданно низким и лежал в интервале от 10 до 100. Однако недавние измерения Бостона и Смита, проведенные в случае раствора I в эвтектическом расплаве Li l — K l, привели к значениям 8 порядка 10 что лучше согласуется с результатами измерения спектров I" в других средах. Максимум полосы поглощения также оказался расположенным в области гораздо более коротких волн, чем найденный Гринбергом и Сандхеймом. [c.379]

    ЭТИ последовательности пиков как обусловленные образованием экситонов Френкеля — Оверхаузера — Нокса. Фактически эти последовательности пиков служат доказательством существования экситонов Ванье — Мотта, важнейшим условием существования которых является высокая диэлектрическая проницаемость азидов. С более простой точки зрения, можно было бы считать, что предел последовательности (и = оо) совпадает с границей полосы проводимости. Это было бы так, если критерием была только плотность состояний. Однако интенсивность спектров поглощения зависит также от вероятности переходов, определяемых правилами отбора (матричные элементы, соединяющие начальное и конечное состояния). Поэтому имеющиеся данные не позволяют сделать определенного заключения о положении междузонного перехода в азидах натрия и цезия. В случае азида рубидия меж-дузонный переход лежит, по-видимому, примерно на 0,1 эв выше предела последовательности с и = со. В случае же азида калия имеются признаки дальнейшей тонкой структуры. Именно за экситонным пределом появляется участок шириною около 0,3 эв, в котором суммарная вероятность перехода проходит через минимум и имеется плечо при 8,7 эв, происхождение которого не было объяснено. Для выяснения природы этого участка требовалось всего лишь, чтобы спектр был исследован в поляризованном свете на ориентированном монокристалле. В настоящее же время для объяснения строения этого участка спектра указывают на наблюдавшуюся на одном из образцов хемилюминесценцию. Однако отсутствие этого минимума в спектре азида рубидия делает это объяснение маловероятным. Теоретически можно было бы ожидать, что истинное разрешенное междузонное поглощение имеет границу, обусловленную вертикальным переходом в центре бриллюеновской зоны (к 0), но что у валентной зоны имеются восходяпще ветви. Ответы на эти вопросы будут получены после проведения теоретико-группового анализа энергетических уровней. [c.146]

    Со времени открытия 5-минут1шх колебаний Солнца они интенсивно изучаются многими группами исследователей [42]. При наблюдениях период 5-минутных колебаний подвергается случайным флуктуациям в диапазоне примерно 3-7 мин. Такие кажущиеся флуктуации периода являются результатом интерференции большого числа колебаний разных частот со, с различшзш горизонтальным волновым числом К и различными амплитудами. Наблюдения с высоким пространственным и временным разрешением определили спектр мощности периодического сигнала в координатах К , ш в виде отчетливо разделенных полос. Наблюдаемые колебания захватывают лишь внешние слои конвективной зоны, но потенциально несут информацию о строении Солнца вплоть до ее нижней границы, которая определяется условием конвективной устойчивости. Собственные колебания Солнца с периодами 7-70 мин были зарегистрированы в периоды 41 мин в записях солнечного микроволнового излучения 50 мин в разности интенсивностей солнечного радиоизлучения на двух близких частотах при изучении более длинных записей этот период распался на два -около 57 и 33 мин в среднем поле скоростей в фотосфере были зарегистрированы колебания с периодом примерно 40 мин в доп-леровском смещении солнечной линии поглощения уста1ювлены колебания с периодами 58 и 40 мин в верхних слоях земной атмосферы с периодами 11,7 0,1 12,7 0,1 15,8 0,2 23,2 0,2 33 1 мин были обнаружены вариации потока гамма-квантов. Наиболее детальные результаты получены Хиллом и его коллегами [44]. [c.67]

    Ей определяет длинноволновую границу — начало полосы поглощения твердым веществом излучения. При повышении частоты излучения образуются все более крупные эк-ситоны, пока частота не достигает такого значения V, что [c.121]

    Частота вращательного движения молекулы составляет величину порядка 10 ° сек- частота излучения при переходе с одного энергетического уровня на другой сравнительно низка, а длина волны велика. Соответствующие полосы поглощения проявляются в далекой инфракрасной и микрорадиоволновой частях спектра. В действительности только что намеченные границы оказываются достаточно размытыми, а расшифровка спектров (т. е. отнесение отдельных линий спектра за счет того или иного типа движения в молекуле) затруднена. [c.309]

    Сравнение спектров отражения-поглощения слоев одинакового состава, находящихся на границах раздела полупроводник — металл и воздух — металл, показывает соответствие частот максимумов и полуширин полос поглощения и значительное различие их интегральных интенсивностей. В случае сильнопоглощающих диэлектрических слоев фактор поглощения в [c.153]

    Адгезия к окислам металлов и металлических пленок, осажденных на окисную подложку, во многом определяется образованием химических соединений [3], в частности окислов [5, 10, 12L При исследовании тонких пленок молибдена и ванадия, напыленных на подложки SiOj и AlaOg, необходимо обратить внимание на возможность обнаружения на межфазной границе пленка — подложка окислов молибдена и ванадия соответственно. Однако в то время как металл обладает максимально возможным коэффициентом поглощения К Ю —10 смг ) в очень широкой области спектра от жесткого ультрафиолета и до радиоволн включительно, окислы в широких спектральных участках обладают значительно меньшим коэффициентом поглощения [14]. Поэтому сравнительно небольшие по интенсивности полосы поглощения окислов практически невозможно обнаружить на фоне мощного поглощения чистого металла. Лишь в определенных участках спектра, в которых начинаются собственные поглощения, обусловленные междузонными переходами, величина поглощения окисла может в какой-то мере приближаться к коэффициенту поглощения металла. Для обнаружения окислов молибдена и ванадия по оптическому пропусканию тонких пленок, напыленных на окисные подложки, необходимо было выбрать такой спектральный интервал, в котором происходит резкое изменение величины коэффициента поглощения окисла молибдена или ванадия) от сравнительно небольших значений до значений, близких к их металлическому поглощению. Только в этом случае можно обнаружить характерные спектральные изменения пропускания, которые будут указывать на наличие того или иного окисла. Так как при высоких температурах, начиная с 800° С и выше, стабильны только [c.19]

    Окисел ванадия VOj имеет структуру рутила (TiOj) [8] и обладает сильной полосой поглощения [15] в области 300—600 нм, т. е. примерно там же, где и М0О3. Предполагается также, что соединения гомологичного ряда У 0зп-1 (4 > п > 8) также имеют структуру рутила [8]. Поэтому и для обнаружения образования окислов ванадия на границе раздела пленка — подложка целесообразно было выбрать область спектра 350—580 нм.. [c.20]

    Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием в-ва. Спектр разреженных атомарных газов-ряд узких дискретных линий, положение к-рых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов-полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетич. уровнями молекул. Спектр в-ва в конденсиров. фазе определяется не только природой составляющих его молекул, ио и межмол. взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос разл. интенсивности. Иногда в нем проявляется структура колебат. уровней (особенно у кристаллов при охлаждении). Прозрачные среды, напр, вода, кварц, не имеют в спектре полос поглощения, а обладают лишь границей поглощения. [c.14]


Смотреть страницы где упоминается термин Поглощение полосы, граница: [c.264]    [c.329]    [c.330]    [c.212]    [c.132]    [c.102]    [c.51]    [c.74]    [c.162]    [c.166]    [c.167]    [c.121]    [c.130]    [c.74]    [c.167]    [c.155]    [c.105]    [c.244]    [c.99]    [c.100]    [c.333]   
Современная аналитическая химия (1977) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте