Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт ретроградный

    Цитоскелет нейрона состоит главным образом из нейрофиламентов, микротрубочек и актина. Он поддерживает характерную форму нейрона и обеспечивает транспорт материалов к телу клетки, где синтезируются белки и липиды, используемые в других местах, и в обратном направлении. Аксонный транспорт складывается из быстрого антероградного и ретроградного транспорта, осуществляемого пузырьками, которые движутся со скоростью более 400 мм в сутки, и медленного антероградного транспорта-переноса белков цитоскелета и цитозоля со скоростью несколько миллиметров в сутки. В растущем нейроне цитоскелет необходим для продвижения конуса роста, который тянет за собой удлиняющийся аксон или дендрит. По механизму своего передвижения коиус роста сходен с фибробластом и, видимо, выбирает свой путь в результате контактных взаимодействий с субстратом, а также под хемотаксическим влиянием молекул, растворенных во внеклеточной жидкости, таких как фактор роста нервов. [c.138]


    Все это — модулирующие эффекты, влияющие на синтез медиатора и происходящие после определенной стадии дифференциации. Молекулярный механизм подобной модуляции еще неизвестен, участниками этого процесса являются медиатор, возможно, ионная среда и трофические факторы. Тирозингидроксилаза также индуцируется фактором роста нерва (МОЕ), который захватывается нервным окончанием при пиноцитозе и отсюда переносится к ядру клетки путем ретроградного аксонального транспорта. [c.322]

    Ретроградный транспорт позволяет тем. кто изучает анатомию нервной системы, легко прослеживать нервные связи с помощью несложной методики, показанной на рис. 19-7. [c.293]

    Благодаря ретроградному транспорту поддерживается обратная химическая связь между окончаниями и телом 19.4.4. нервной клетки 292 [c.500]

    Микротрубочки и нейрофиламенты являются важнейшими структурными образованиями нервных клеток, обладающими как скелетными, так и сократительными свойствами. Они принимают непосредственное участие в прямом и ретроградном транспорте клеточных органелл, нуклеиновых кислот, белков, [c.81]

    Ранее мы определили нервную систему как орган коммуникации, а нейрон — как ее элементарную единицу. Нейроны обеспечивают связь, или сообщение, между отдельными участками организма, часто значительно удаленными друг от друга (эти расстояния измеряются в сантиметрах, но могут составлять несколько метров, если речь идет о жирафах и китах ). Это означает, что пассивной диффузии недостаточно, чтобы молекулы преодолели за разумное время довольно значительное расстояние от тела клетки до нервного окончания. Как же тогда ядро клетки регулирует действия, например, кончика растущего аксона Более 30 лет назад Пауль Вейс, основатель биологии развития нервной системы, нашел ответ на этот.вопрос аксон имеет собственную систему транспорта макромолекул и. молекул меньшего размера. Такой аксональный транспорт [1] складывается из антероградного (в направлении от тела клетки к нервному окончанию) и ретроградного (от окончания аксона к телу клетки) транспорта. Существует также транссинаптический транспорт от нейрона к нейрону, от глиальной [c.303]

    Обнаружены заметные различия в скоростях транспорта. Первоначально различали только медленный аксональный транспорт ( аксональный поток ), имеющий скорость 1 — 4 мм/сут, и быстрый — 200—400 мм/сут. Впоследствии выявлена еще одна скорость переноса 15—50 мм/сут, а в некоторых работах [2] предполагается существование даже пяти скоростей. Здесь важно отметить, что идентичные молекулы транспортируются с одинаковой скоростью. Аксональный поток (медленный аксональный транспорт) переносит следующие белки (некоторые далее подробно рассмотрены) тубулин, субъединицы ней-рофиламентов, актин, миозин и белки типа миозина, а также растворимые ферменты промежуточного метаболизма. Если аксон отделить от тела клетки, медленный транспорт прекращается. Ретроградный медленный транспорт не наблюдался. Митохондрии путешествуют с промежуточной скоростью, а ферменты метаболизма медиаторов (например, допамин-(5-гидрокси-лаза и ацетилхолинэстераза), гликопротеины и гликолипиды,— с высокой скоростью. Ацетилхолинэстераза переносится и в обратном направлении с примерно такой же высокой скоростью. [c.307]


    Цитоплазма нейрона находится в постоянном движении. Это движение, называемое аксональным транспортом, осуществляет функциональную связь между телом клетки и ее ядром, с одной стороны, и нервным окончанием, с другой стороны, часто находящемся на расстоянии 1 м и даже более. Аксональный транспорт обусловливает рост и функциональную активность аксона, его регенерацию после очаговых поражений и адаптацию синаптической активности. Различают антеро- и ретроградный аксональный транспорт, так что различные компоненты могут проходить не только от тела клетки к синапсу, но и в обратном направлении. Существует медленный аксональный поток (1— 4 мм/сут), промежуточный (15—50 мм/сут) и быстрый (200— 400 мм/сут). Каждый вид молекул переносится с характерной для него скоростью. Тубулин, субъединицы нейрофиламентов, актин и миозин транспортируются медленно митохондрии с промежуточной скоростью мембранные белки, гликопротеины, гликолипиды, ферменты синтеза медиаторов и медиаторы — быстро. ДНК, РНК н ганглиозиды не транспортируются. Ретроградный транспорт удаляет продукты деградации синапсов, переносит ферменты, а также субстраты, поглощенные пресинаптической мембраной, например фактор роста нервов, токсин столбняка и нейротропные вирусы. [c.316]

    Плазматические мембраны нейронов и мембраны некоторых не нейрональных клеток содержат специфические рецепторы (рецепторы ЫОР), которые связывают N0 вначале с низким, а затем с высоким сродством. Было показано, что рецепторы с высоким сродством образуют кластеры и вместе со связанным ЫОР попадают в клетку при эндоцитозе и транспортируются внутри клетки частично к лизосомам (где происходит их деградация), частично к ядру. При их поглощении нервным окончанием рецептор и ЫОР переносятся путем ретроградного аксонального транспорта. Подобные процессы могут происходить и при других типах гормональной регуляции и поэтому КОР служит своеобразной моделью гормонов и факторов роста. Механизм действия ЫОР в клетке не изучен. В ответ на действие ЫОР наблюдалось фосфорилирование белка и поэтому было постулировано участие в этом процессе сАМР-зависимой протеинкиназы. Идентифицировано несколько субстратов КОР-активированного фосфорилирования (среди них тирозингидроксилаза, рибосомальный белок 56, гистоны Н1 и НЗ и не-гистонные ядерные белки), но не показана связь между этими процессами и физиологической функцией МОР. [c.326]

    Рнс. 18-73. 31десь показано, как можно использовать ретроградный транспорт пероксидазы хрена (ПХ) для идентификации спинномозговых мотонейронов, иннервирующих определенную мышцу. Обратите внимание, что каждая мышца снабжена нервом, содержащим отростки многих мотонейрояов. [c.142]

    Механизм, лежащий в основе гибели нейронов, которые не смогли установить связь с клеткой-мишенью, все еще остается предметом гипотез. Согласно самой известной из них, гибель таких нейронов может быть обусловлена отсутствием некоего фактора выживания , выделяемого нормальной клеткой-мишенью. Полагают, что этот фактор-какая-то специфическая молекула-поглощается окончаниями того аксоиа, который вступил в контакт, и затем доставляется путем ретроградного аксонного транспорта в тело клетки, что предотвращает ее гибель. По-видимому, для некоторых групп нейронов такого рода фактором выживания служит фактор роста нервов (разд. 13.17). [c.144]

Рис. 4.9. Поглощение и транспорт пероксидазы хрена. Фермент был введен кошке в верхний бугорок четверохолмия он был поглощен нервными окончаниями и ретроградно перенесен в тела клеток в слое V (см. вставку) поля 19 зрительной коры. (Gilbert, Kelly, 1975.) Рис. 4.9. Поглощение и транспорт <a href="/info/102286">пероксидазы хрена</a>. Фермент был введен кошке в верхний бугорок четверохолмия он был поглощен <a href="/info/510193">нервными окончаниями</a> и ретроградно перенесен в тела клеток в слое V (см. вставку) поля 19 <a href="/info/99615">зрительной коры</a>. (Gilbert, Kelly, 1975.)
    Наличие микротрубочек и нейрофиламентов в аксонах и дендритах естественно навело на мысль, что они, возможно, участвуют в транспорте разных веществ, и множество биохимических работ, в том числе исследования с колхицином, подтверждают это представление. Внутриклеточный транспорт между телом клетки и отходящими от него отростками жизненно важен для экономики нервной клетки, и мы уже привели один пример этого, говоря о транспорте веществ (в том числе ПХР) от нервных окончаний к телу клетки. Такое направление транспорта называется ретроградным, а транспорт от тела клетки к окончаниям— ортоградным. Это можно показать по-разному, например прямым наблюдением под микроскопом за движением в крупном аксоне (например, в аксоне кальмара), или наблюдениями над выбуханием аксона со стороны тела клетки, проксимально по отношению к месту, где он пережат. [c.94]

    В последние годы внимание нейрохимиков привлекает изучение аксонального и ретроградного транспорта. Показано, что по аксону переносятся различные белки, синтезированные в перикарионе, ряд аминокислот, некоторые углеводы - глюко-замины, сиаловые кислоты и др. Транспорт последних обусловливает специфические перестройки и функциональные модификации белков синаптических окончаний за счет включения в них углеводных компонентов. Представление о соединениях, транспортируемых по аксону с различной скоростью, дают сведения, приведенные в табл. 9. [c.189]


    Быстрый аксонный транспорт необходим во время развития клетки для роста аксонов и дендритов, которые удлиняются путем добавления новой мембраны на их концах. Быстрый аксонный транспорт имеется и в нейроне, закончившем рост, у которого количество мембранного материала в кончиках отростков не зшеличивается. В этом случае быстрый транспорт мембран от тела клетки, называемый антероградным, должен бьпъ точно сбалансирован с быстрым ретроградным [c.292]


Смотреть страницы где упоминается термин Транспорт ретроградный: [c.350]    [c.309]    [c.132]    [c.142]    [c.293]    [c.295]    [c.359]    [c.74]    [c.156]    [c.293]    [c.295]    [c.4]   
Молекулярная биология клетки Том5 (1987) -- [ c.132 , c.142 ]




ПОИСК







© 2024 chem21.info Реклама на сайте