Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос групп ферментов

    Изомеразы. К классу изомераз относят ферменты, катализирующие взаимопревращения оптических и геометрических изомеров. Систематическое название их составляют с учетом типа реакции субстрат—г<ис-/и/ йнс-изомераза . Если изомеризация включает внутримолекулярный перенос группы, фермент получает название мутаза . [c.161]

    Трансферазы — ферменты, катализирующие реакции переноса групп. [c.5]

    СООН, N1 2, ЫН, ОН, 5Н, а также гидрофобные группы, способные ориентировать молекулы реагирующих веществ в определенном положении по отношению к активному центру. В состав активного центра многих ферментов входят ионы металлов, причем при удалении иона металла из металлофермента последний теряет каталитические свойства. Каталитическая активность ферментов имеет максимум на шкале pH, в сильнокислых и сильнощелочных средах она, как правило, не проявляется. Каталитическая активность ферментов наиболее оптимальна при температуре от 20 до 40° С, при 60 — 70° С происходит их денатурация. Активные центры имеют строго определенную структуру, что позволяет ферменту присоединять только молекулы определенного строения. Так, например, фермент уреаза гидролизует карбамид СО(NH2) в 10 раз быстрее, чем ион водорода, и не оказывает влияния на реакции гидролиза других родственных карбамиду соединений. В настоящее время известно около тысячи ( )ер-ментов, одни из которых катализируют только окислительно-восстановительные процессы, другие—реакции с переносом групп, третьи—реакции гидролиза и т. д. [c.184]


    Гидролазы — ферменты, катализирующие перенос групп на молекулу, воды. [c.75]

    Прямой перенос протона между атомами С-1 и С-2 при действии изо-мераз сахаров может показаться удивительным. Как может очень подвижный протон оставаться присоединенным к группе фермента в течение миллисекунд или более, а не переноситься к молекулам растворителя Может ли это означать, что в присутствии фермента предпочтительно происходит перенос гидрид-иона или атома водорода, а не перенос протона Если это так, то наблюдаемый обмен протона с [c.155]

    Ферменты часто катализируют перенос групп атомов с субстрата на продукт. Функция кофермента при этом заключается в приеме группы с субстрата, обычно путем образования кова- [c.602]

    Трансферазы. Представители этой группы ферментов катализируют перенос различных групп оГ одной молекулы к другой, например фосфорилирование, переаминирование. Эти ферменты принимают участие в сложных биохимических процессах, протекающих в клетках. [c.23]

    Важными аспектами реакционной способности органических соединений являются их кислотные и основные свойства. Эти свойства часто обусловливают существование большинства органических биомолекул в условиях организма в ионном состоянии. Перенос протона, например между атомами кислорода, азота и серы, наблюдается в ходе многих биохимических реакций. Большую роль в биохимических процессах также играет кислотный или основный катализ, осуществляемый с участием соответствующих ионогенных групп ферментов. [c.100]

    Трансферазы. Ферменты этого класса осуществляют перенос групп атомов. Их названия включают в себя такие понятия, как донор акцептор — транспортируемая группа — трансфераза . Эти ферменты разделены на подклассы, катализирующие перенос углеродных остатков. Рассмотрим несколько примеров. [c.66]

    Аминотрансферазы — группа ферментов, катализирующих перенос аминогруппы от одного метаболита к другому их называют также трансаминазами. [c.23]

    Изомеразы — катализируют реакции изомеризации, например превращение альдегидов в кетоны, цис-формы в трансформу и наоборот. Если изомеризация заключается во внутримолекулярном переносе группы, фермент называют мутазой. Если происходит инверсия асимметрических групп, фермент называют рацемазой или эпимеразой, например  [c.101]

    Когда изомеризация состоит во внутримолекулярном переносе группы, фермент называют мутазой например, фермент фосфо-глюкомутаза катализирует реакцию обратимого превращения глюкопирапозо-1-фосфорной кислоты в глюкопиранозо-б-фосфор-ную кислоту  [c.154]


    В активный каталитический центр входят группы, которые могут ориентировать молекулы субстрата в определенном положении по отношению к активному центру. Активный центр фермента имеет строго определенную структуру. Он подобен матрице, в которую может войти молекула только определенного строения. Обычно в ферменте на участок цепи с молекулярной массой 30 000—80 ООО приходится один активный центр. В настоящее время известно около тысячи ферментов. Отдельные группы ферментов катализируют окислительно-восстановительные реакции (оксидоредуктазы) реакции с переносом групп (трансферазы) реакции гидролиза (гидролазы) реакции отщепления групп атомов негидролитическим путем с образованием двойной связи или присоединением по двойной связи (лиазы) реакции изомеризации (изомеразы) реакции присоединения двух молекул (синтетазы). Приведенный перечень реакций, катализируемых ферментами, показывает, что при температурах 0—40° С в живом организме синтезируются высокоэффективные катализаторы практически для всех реакций, связанных с жизнедеятельностью организма. [c.632]

    В природе распространены системы, в которых небелковый кофер-мент обеспечивает протекание реакции переноса группы (ацильной, оксиметильной, формильной, метильной и др.) один из ферментов переносит группу от первого субстрата к коферменту, а другой — от кофермента ко второму субстрату. Наибольшее биологическое значение имеют, по-видимому, реакции трансфосфорилирования, которые обеспечивают передачу энергии от одного процесса к другому. Переносчиками фосфатной группы служат различные нуклеотиды и нуклеози ды, например аденозиндифосфат (АДФ)  [c.16]

    Трансферазы — ферменты, способствующие переносу различных химических групп с одной молекулы на другую. Например, трансамипаза ускоряет перенос группы —N1 2 траисметплаза —СНз трапскстолаза —С = 0 (кетогруппу). [c.259]

    Цитохромоксидаза представляет собой сложный белковый комплекс, в состав которого входит по меньшей мере 8 индивидуальных полипептидов. Во внутримолекулярном переносе электронов участвуют простетические группы фермента гемы а и з, а также 2 атома меди ua и ub. Трансмембранный перенос электронов от цитохрома с к молекулярному кислороду сопровождается векторным переносом протона из матрикса митохондрий в межмембранное пространство. Разность электрохимических потенциалов ионов водорода, генерируемая в цитохромоксидазной реакции на мембране митохондрий, может быть использована для синтеза АТФ. [c.432]

    ГЛИКОЗИЛТРАНСФЕРАЗЫ, группа ферментов класса трансфераз, катализирующих перенос гликозильных групп на орто- и пирофосфорную к-ты, олиго- и полисахариды, Н2О или др. акцептор. Делятся на гексозил- и пентозил-трансферазы. Обладают строгой субстратной специфичностью по отношению к донору углевода и к конфигурации синтезируемой связи. [c.578]

    И заме. разы. Ферменты, отнесенные к этому классу, катализируют разнообразные реакции изомеризации, например превращение циеформы в трансформу, взаимопревращение альдоз и кетоз, внутримолекулярный перенос групп (в последнем случае ферменты называют му-тазами) и т. д. [c.113]

    Большинство из перечисленных металлов, за исключением непереходных цинка, кадмия, ртути и свинца, относятся к й-эле-ментам. Наличие вакансий в электронных оболочках -элементов обуславливает легкость их включения в комплексные соединения, в том числе и с биолигандами. Благодаря этому такие металлы с переменной валентностью, как Си, Со, N1, V, Сг, Мп, Ке, наряду с цинком и молибденом входят в состав простетических групп ферментов и некоторых белков. В составе комплексов с биомолекулами они участвуют в переносе кислорода, алкильных групп и во многих других жизненно важных процессах и реакциях. Однако индивидуальная потребность организмов в тяжелых металлах очень мала, а поступление из внешней среды избыточных количеств этих элементов приводит к различного рода токсическим эффектам. [c.244]

    Гексокиназа, подобно большинству ферментов, катализирующих перенос фосфатных групп, проявляет абсолютную потребность в двухвалентном катионе, в роли которого добычно выступает ион Mg +. Хотя Истинным субстратом гексокиназы считается комплекс АТР с Mg +, точный механизм комплексообразования металла с полифосфатом на поверхности фермента не известен. По-видимому, металл связывается и с группами фермента, и с группами субстрата. [c.125]

    Биохимические процессы в клетке контролируются специальными белками -ферментами. Ферменты являются биокатализаторами с очень высокой эффективностью и специфичностью. Они могут увеличивать скорость реакций в 10 и более раз. Очень часто ферменты называют по субстрату с окончанием аза . Так, фермент цел-люлаза катализирует гидролиз целлюлозы. Используются также названия ферментов по катализируемой реакции. Например, гидролазы катализируют гидролиз, дегидрогеназы - отрыв водорода и т.д. В связи с увеличением числа известных ферментов в настоящее время по катализируемым реакциям все ферменты разделены на шесть классов оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Ок-сидоредуктазы катализируют обратимые окислительно-восстановительные реакции, в которых происходит перенос водорода, электронов или гидрид-нонов. Трансферазы переносят группы атомов от одного соединения к другому. Гидролазы катализируют гидролитическое расщепление различных связей (гликозидных, пептидных, эфирных и др.). Лиазы катализируют реакции, в которых происходит расщепление химических связей с образованием двойных связей илн присоединение по двойным связям. Изомеразы воздействуют на процессы изомеризации. Л и газы (син-тетазы) катализируют образование связи между двумя соединениями, используя энергию АТФ и других высокоэнергетических соединений. [c.327]


    Во мно1 их случаях кофермент можно отделить от белка-фермента. Таким образом, коферменты можно иногда рассматривать в качестве особой формы косубстрата ферментативной реакции. Коферменты обычно функционируют в качестве акцепторов или доноров функциональных групп или атомов и часто связывают два фермента друг с другом с образованием ферментной системы [1]. В этом случае один фермент переносит группу или атом с субстрата на кофермент, а второй — с кофермента на второй субстрат. В настоящее время в большинстве случаев возможно объяснение процесса переноса в терминах механизмов органических реакций. [c.580]

    Ферментативный перенос протона с участием атомов азота мы рассмотрим на примере ацетоацетатдекарбоксилазы, входя-щей в многочисленную группу ферментов, механизм действия которых включает образование в качестве промежуточного соединения основания Шиффа (имина). Ацетоацетатдекарбоксила- [c.146]

    Особую группу ферментов составляют надмолекулярные (или мультимолекулярные) ферментные комплексы, в состав которых входят не субъединицы (в каталитическом отношении однотипные протомеры), а разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Отличительными особенностями подобных муль-тиферментных комплексов являются прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве ( путь превращения в пространстве и времени). Типичными примерами подобных мультиферментных комплексов являются пируватдегидрогеназа и а-кетоглутаратдегидрогеназа, катализирующие соответственно окислительное декарбоксилирование пировиноградной и а-кетоглутаровой кислот в животных тканях (см. главу 10), и синтетаза высших жирных кислот (см. главу 11). Молекулярные массы этих комплексов в зависимости от источника их происхождения варьируют от 2,3 10 до 10 10 Ассоциация отдельных ферментов в единый недиссоциирующий комплекс имеет определенный биологический смысл и ряд преимуществ. В частности, при этом резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться при действии изолированных ферментов. Ряд таких мультиферментных комплексов, иногда называемых ферментными ансамблями, структурно связан с какой-либо органеллой (рибосомы, митохондрии) или с биомембраной и составляет высокоорганизованные надмолекулярные системы, обеспечивающие жизненно важные функции, например тканевое дыхание (перенос электронов от субстратов к кислороду через систему дыхательных ферментов). [c.129]

    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    Изотопный обмен 0 может быть использован для более полного изучения реакций ферментативных превращений. При катализе большая группа ферментов (фосфотрансфераз) расщепляет фосфаты, ответственные за энергозапас, и таким образом осуществляется перенос фосфатной группы или на другой субстрат (киназу) или на окружающую воду (гидролазу). При ферментативном гидролизе нуклеозидтрифосфата (НТФ), ответственного за энергозапас клетки, в качестве промежуточного продукта возникает такое состояние фосфатной группы, при котором связь с ангидридом фосфорной кислоты уже расщеплена, однако фосфатный остаток Р,- еще связан с нукле-озиддифосфатом (НДФ) и присоединен к ферменту Е. Формально эту реакцию можно представить в виде следующего уравнения  [c.86]

    Ферменты переноса — трансферазы. Ферменты этой группы катализируют перенос атомных группировок одного соединения на другое, например, аминоферазы производят переаминирова-ние фосфоферазы катализируют перенос остатков фосфорной кислоты. [c.83]


Смотреть страницы где упоминается термин Перенос групп ферментов: [c.486]    [c.496]    [c.15]    [c.587]    [c.489]    [c.489]    [c.250]    [c.625]    [c.625]    [c.625]    [c.225]    [c.126]    [c.248]    [c.282]    [c.490]    [c.517]    [c.374]    [c.368]    [c.496]    [c.244]    [c.223]   
Катализ и ингибирование химических реакций (1966) -- [ c.113 ]




ПОИСК







© 2025 chem21.info Реклама на сайте