Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкость, движение турбулентное основной закон

    В настоящее время исследования законов турбулентного обмена ведутся по двум основным направлениям. Первое возникло на основе аналогии между хаотическим движением молекул и случайными перемещениями конечных объемов жидкости в турбулентном потоке это привело к созданию так называемой полуэмпирической теории турбулентности. Различные модификации этой теории стремятся выразить турбулентные потоки какой-либо субстанции через осредненные характеристики среды. [c.437]


    Это различие в законах изменения коэффициента к связано с тем, что непосредственное влияние вязкости жидкости на сопротивление в турбулентном потоке гораздо меньше, чем в ламинарном. Если в последнем потери напора на трение прямо пропорциональны вязкости (см. 1.22), то в турбулентном потоке, как это следует из формул (1.55) и (1.95), эти потери пропорциональны вязкости в степени 1/4. Основную роль в турбулентном потоке играют перемешивание и перенос количеств движения. [c.98]

    Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса теплоты. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется вследствие теплопроводности. При турбулентном режиме такой способ переноса теплоты сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуществляется благодаря интенсивному перемешиванию частиц жидкости. В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказьшается определяющим. Следовательно, как для ламинарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье (уравнение (5.3)). [c.181]

    Вопросы для повторения. 1. Чем отличаются капельные жидкости от паров н газов 2. Что такое идеальная жидкость и как ее можно охарактеризовать 3. Какие задачи решает гидростатика Что такое гидростатическое давление и какими свойствами оно обладает В каких единицах выражается гидростатическое давление 4. Какие приборы используются для измерения давления 5. Как используются основные уравнения гидростатики В чем состоит физическая сущность закона Паскаля 6. Какие задачи решает наука гидродинамика 7. Что такое установившееся и неустановившееся движение 8. Из каких слагаемых состоит уравнение Бернулли Каков их физический смысл 9. Что такое ламинарный и турбулентный режимы течения жидкостей Чем они отличаются  [c.44]

    Эти соображения применимы к диффузии малого объема вещества, плотность которого сравнима с плотностью жидкости основного потока. Плотность капель топлива, увлекаемых турбулентным потоком воздуха, приблизительно в 500 раз превышает плотность воздуха следует ожидать, что инерция капель затрудняет их способность следовать пульсациям воздушного потока. Можно очень грубо оценить значение этого эффекта, если допустить, что пульсации скорости в турбулентном потоке ио своей природе являются синусоидальными и что аэродинамическое сопротивление частицы подчиняется закону Стокса. Уравнение движения капли в этих условиях будет иметь вид [c.351]


    Из-за хаотичности траекторий частиц теоретическое изучение турбулентных потоков значительно усложняется. До недавнего времени считалось, что без привлечения дополнительных гипотез и опытных данных с помощью уравнений гидродинамики вообще невозможно рассчитать поле скорости и гидравлическое сопротивление при турбулентном режиме движения жидкости. В настоящее время это мнение можно считать устаревшим. Для некоторых простейших случаев (течение жидкости в трубах и каналах на участках, значительно удаленных от входа, и др.) численным моделированием с помощью сверхмощных компьютеров получены решения уравнений Навье—Стокса и для турбулентных потоков рассчитаны напряжения в жидкости, подтверждены эмпирические законы гидравлического сопротивления, установлено критическое число Рейнольдса (Ке р 2300) и т.п. Тем не менее, основным методом изучения турбулентных потоков в настоящее время остается метод, предложенный в XIX в. английским ученым О. Рейнольдсом. [c.144]

    В первом разделе приводятся общие сведения по гидравлике, включающие справочные сведения по физикомеханическим свойствам наиболее распространенных жидкостей и газов, основные теоретические положения и уравнения газогидродинамики, законы ламинарного и турбулентного трения при движении жидкости по трубам, рассмотрены особые случаи движения жидкостей (гидроудар, истечение, кавитация). Материал подразделов 1.1 - 1.6 позволяет проводить расчеты простых и сложных гидравлических систем с использованием диаграмм гидравлических [c.3]

    Рассмотрению этих вопросов посвящен настоящий раздел, в котором приводятся (н.п. 1.1 — 1.6) общие сведения по гидравлике, включающие справочные сведения по физико-механическим свойствам наиболее распространенных жидкостей и газов, основные теоретические положения и уравнения газогидромеханики, основы теории газогидродинамического подобия, законы ламинарного и турбулентного трения при движении жидкости по трубам, рассмотрены особые случаи движения жидкостей (гидроудар, истечение, кавитация). Материал параграфов 1.1 — 1.6 позволяет проводить приближенные оценочные гидравлические расчеты простых систем без обращения к диаграммам гидравлических сопротивлений реальных трубопроводов и трубопроводной арма-туры. В то же время содержание этих параграфов является необходимой теоретической базой, обеспечивающей понимание пояснений и практических рекомендаций и правильное использование диаграмм гидравлических сопротивлений, приведенных в параграфах 1.7 — 1.8 (основу этих параграфов составляют материалы справочника И. Е. Идельчика, дополненные сведениями о гидравлических сопротивлениях и коэффициентах теплоотдачи компактных развитых поверхностей теплообмена), при проведении точных расчетов сложных гидравлических систем. [c.5]

    Существенное развитие наука о движении жидкостей и газов получила с XVI в. нащей эры, когда появились труды многих выдающихся ученых. Так, Леонардо да Винчи (1452—1519) изучал характер движения воды в реках и каналах, занимался вопросами течения жидкости через отверстия. Французский ученый Блез Паскаль (1623—1662) является автором основного закона гидростатики. Швейцарец Даниил Бернулли (1700—1782), выходец из известной семьи математиков Бернулли, установил законы движущейся жидкости. Открытый Михаилом Васильевичем Ломоносовым (1711—1765) закон сохранения массы и энергии позволил выяснить физическую сущность уравнения Д. Бернулли. Разносторонний ученый (математик, механик, физик, астроном) швейцарец Леонард Эйлер (1707—1783), долгое время проработавший в России, в виде дифференциальных уравнений описал движение идеальной жидкости. Английский физик и инженер Осборн Рейнольдс (1842—1912) написал труды в области теории динамического подобия, течен/ия вязкой жидкости и турбулентности, установил критерий режимов течения жидкости. Русский ученый Николай Павлович Петров (1836—1920) создал основы гидродинамической теории смазки. Николай Егорович Жуковский (1847— 1921), отец русской авиации, является не только основоположником аэродинамики, но и автором трудов в области гидравлики и гидродинамики. И в наше время над указанными проблемами работают большое число отечественных и зарубежных ученых, которые вносят свой достойный вклад в дело познания мира. [c.4]

    Скорости этих перемещений и т. Вследствие неустойчивости пульсации первого порядка на них накладываются пульсации второго порядка, имеющие масштаб X" < X, и пульсационные скорости и" < и. Такой процесс последовательного измельчения пульсаций происходит до тех пор, пока для пульсаций некоторого порядка I число Не,- = A,oM, /v не окажется достаточно малым, чтобы ощутимое влияние вязкости жидкости предупреждало образование пульсаций I + 1 порядка. Величина называется внутренним (минимальным) масштабом турбулентности. Число Не,-для внутреннего масштаба имеет порядок единицы. При этих значениях Йе энергия мелкомасштабных турбулентных пульсаций благодаря вязкости диссипируется в тепловую. Хотя энергия диссипации и обусловливается в конечном итоге вязкостью жидкости, ее величину Е характеризуют крупномасштабные пульсации. В частности, она равна потере энергии самых крупномасштабных движений на создание движений меньшего масштаба. Учитывая это, а также ничтожную роль вязкости, можно считать, что основными параметрами, характеризующими свойства турбулентного потока жидкости, являются ее плотность р и энергия диссипации Е. В соответствии с этим скорость турбулентных пульсаций по закону Колмогорова—Обухова , [c.58]



Смотреть страницы где упоминается термин Жидкость, движение турбулентное основной закон: [c.5]    [c.61]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Движение жидкости

Закон основной



© 2025 chem21.info Реклама на сайте