Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение химических аналогов основы

    Определение химических аналогов основы [c.138]

Таблица 28. Характеристики методик определения химических аналогов основы Таблица 28. <a href="/info/1900180">Характеристики методик определения</a> <a href="/info/219216">химических аналогов</a> основы

    Приведенные в книге данные показывают, что кристаллизационное концентрирование имеет преимущества по сравнению с другими методами аналитического обогашения, прежде всего, при определении химических аналогов основы и неметаллических примесей в чистых веществах. Для концентрирования поливалентных катионов в солях щелочных металлов существуют хорошо изученные и весьма эффективные химические и электрохимические методы. Однако и в этих случаях применение управляемой кристаллизации может быть оправдано необходимостью автоматизации процесса, снижения уровня общего фона, экономии анализируемого материала. Разумеется, возможность осуществления кристаллизационного концентрирования примесей зависит от физико-химических свойств анализируемого вещества-его температуры [c.174]

    Задачи планирования синтеза молекул новых химических соединений решаются на основе использования принципа химических аналогий. Химические аналоги позволяют с определенной достоверностью предсказать множество конкретных реакций, которые не были реализованы и не были отражены в химической литературе, но должны иметь место в силу эмпирических закономерностей, подтвержденных многочисленными известными реакциями [7, [c.36]

    Эффективные катализаторы окисления органических соединений, включая контакты, используемые в настоящее время в промышленности, найдены не на основе строгой научной теории, а путем эмпирического подбора и применения химических аналогий. В то же время в последние годы установлены определенные закономерности и разработаны теоретические подходы, связывающие каталитические свойства веществ с их физико-химическими свойствами. Эти закономерности и теоретические представления могут в определенной мере облегчить эмпирические поиски подходящих катализаторов на практике. [c.188]

    Определение коэффициентов тенло-и массопередачи в уравнениях (II.1)—(П.З) является главной задачей исследования кинетики этих процессов. В основу исследования положен метод аналогии процессов массо- и теплопередачи при их совместном протекании (см. табл. II.1) и анализ кинетических уравнений, характеризующих теплообмен в двухфазной системе Ж—Г [30, 38, 173 и др.]. Коэффициенты теплопередачи и массопередачи при теплообмене р учитывают влияние гидродинамических, физических, физико-химических и геометрических факторов на скорость процессов тепло- и массообмена, выражаемую уравнениями (II.1) и (П.З). В общем случае для теплопередачи при пенном режиме [c.95]


    Принцип унификации пределов взрываемости позволяет оценивать пределы для смесей, содержащих вещества, экспериментально не исследованные. Для этого служит аналогия с модельными, изученными смесями, содержащими соответствующий эталонный компонент, по возможности родственный изучаемому по химической природе, но имеющий благоприятные для экспериментирования физико-химические свойства. В основе такого определения находится предположение о приблизительном равенстве а,ф для обеих систем при одинаковых /, которое подтверждается многими примерами (см. Приложение 5). [c.52]

    Феноменологический подход может быть использован для определения средних показателей реакционной способности сложных систем, характеризующих ее химическую активность, по аналогии с показателями реакционной способности в химии чистых веществ . Любую многокомпонентную смесь гетероорганических углеводородных молекул можно рассматривать как статический ансамбль компонентов. Следовательно, задача состоит в определении усредненной электронной структуры этого ансамбля. Задача решается в рамках ЭФС на основе обнаруженных [12, 21] закономерностей, связывающих интегральную силу осциллятора (площадь под кривой поглощений излучения в видимом и ультрафиолетовом диапазонах спектра) с потенциалом ионизации (ПИ) и сродством к электрону (СЭ). [c.92]

    Однозначное описание свойств элемента предполагает, что каждый элемент должен находиться в периодической системе на строго определенном постоянном месте. Это называется инвариантностью (неизменностью) положения. Известно, что положение элемента в системе Д. И. Менделеева определяется не только его порядковым номером, но также номером периода (строки) и группы (столбца), в которых он находится. Однако даже в наиболее распространенной современной форме периодической системы принцип инвариантности положения элемента не всегда соблюдается. В качестве примера можно привести неопределенное положение в ней водорода. Очевидно, необходим общий критерий, позволяющий однозначно определять положение элемента. Сам Д. И. Менделеев в качестве такого критерия выбрал химические свойства элементов, которые он считал более фундаментальной характеристикой, чем значения атомных масс, несмотря на то, что именно последние были положены им в основу классификации элементов. Поэтому он допускал перестановки элементов (Аг—К, Те—I и т. д.), с тем чтобы привести в соответствие положение элемента в периодической системе с его химическими свойствами, отражаемыми групповой аналогией. В дальнейшем разными исследователями были предложены различные варианты системы (в настоящее время их известно более четырехсот), в основу которых взяты разные, нередко частные критерии. [c.6]

    Курс квантовой механики и квантовой химии на химических факультетах университетов представляет собой начальное введение в основной раздел современной теоретической химии, без знания которого работать в химии, конечно, можно, как можно работать без знания математики. Любая теория, однако, дает определенную широту взгляда, позволяет увидеть общие стороны казалось бы разнородных явлений и открывает возможности для сравнения различных объектов и проведения аналогий между их свойствами. Математически оформленная теория дает к тому же и возможность рассчитать свойства объектов. Так, классическая теория химического строения позволяет сказать, пусть на основе только лишь феноменологических построений, какова может быть структура химического соединения, каковы особенности этой структуры и свойств рассматриваемого соединения сравнительно с другими соединениями, каков набор химических и физикохимических свойств должен быть присущ этому соединению. Квантовая теория оперирует более детальной информацией о строении вещества, что позволяет ей объяснять и предсказывать многие свойства химических соединений (и особенности проявления этих свойств), в том числе такие, которые подчас неподвластны классической теории, например свойства возбужденных состояний, хотя, конечно, по своей общности выводов квантовая теория в чем-то и уступает классической теории. [c.3]

    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]


    Природа и физический смысл некоторых термодинамических параметров интуитивно или по аналогии с механикой известен и понятен. Таково, например, давление и объем тела (газа). Смысл же других параметров не столь очевиден. К их числу относится энтропия 5 и химический потенциал л. Дальнейшее изложение направлено не столько на выяснение физического смысла этих понятий, сколько на обоснование их необходимости и выяснение эмпирического смысла. Эмпиризм в науке не всегда считается ее позитивной стороной, но термодинамика — это наука эмпирическая по своей сути. Эмпирический, теоретический или какой-то иной подход к проблеме требует в первую очередь введения однозначного определения тех величин и понятий, которые используются при обсуждении проблемы. Сложность в том, что в одни и те же понятия иногда вкладывается разный смысл. Во избежание недоразумений далее будем исходить из того, что определить смысл некоторой величины — указать, как ее выразить через другие величины, смысл которых известен. В частности, это значит указать закон (уравнение, формулу), в который определяемая величина входит наряду с известными величинами. Примером может служить второй закон механики, служащий определением понятия масса тела , закон Ома, служащий определением понятия электрическое сопротивление , и т. д. Этот же принцип должен быть положен в основу определения смысла упомянутых выше понятий энтропии и химического потенциала (г-го компонента системы). Уравнение (3.3.1) как раз для этого и предназначено. [c.569]

    В плане этих общих подходов электромиграционный метод близок к хроматографии (те же два основных направления повышения эффективности разделения) — поиск методических приемов лучшего разрешения зон при постоянных Кс и использование химических превращений с целью увеличения Кс. Похожи и основные схемы практического осуществления процесса разделения на колонке, на бумаге, в тонком слое. Возникший на заре развития электромиграции метод подвижной границы внешне аналогичен фронтальному анализу в хроматографии. В этом случае движение разделяемых ионов в электрическом поле происходит непосредственно из раствора их смеси. В наиболее распространенном случае зонного электрофореза просматривается общность с проявительным режимом элюирования в хроматографии. Узкая полоса исходной смеси веществ в среде определенного электролита разделяется на индивидуальные зоны. Существует внешняя аналогия противоточного и двухмерного электромиграционного разделения с соответствующими способами осуществления хроматографического процесса. Поэтому при всем принципиальном различии методов по природе химических процессов, лежащих в их основе, хроматографию и электрофорез иногда даже рассматривают как смежные методы [95]. [c.243]

    Поскольку понятие кратности химической связи успешно используется в классической теории строения и играет там. существенную роль, по-видимому, для тех рядов соединений, для которых могут быть введены квантово-механические аналоги химических связей классической теории, будет возможно и вероятно полезно установить в определенном приближении (несколько условно) и квантово-механический аналог кратности связи классической теории. Естественно, этот аналог, а Следовательно, и само понятие кратность классической теории, теоретической основой которого является его квантово-механический аналог, является ограниченным, приложимым в определенной области (для определяемых состояний и определенных рядов химических частиц), приближенным (в том смысле, что может быть установлен только при определенных приближениях) и в большей или меньшей мере условным (имеющим однозначное определение и значение только при дополнительных условиях, не вытекающих из основных положений квантовой механики). [c.134]

    Однако математика не дает критериев для выбора тех или иных резонансных структур ведь в методе электронных пар волновую функцию можно представить не только как линейную комбинацию волновых функций грь грг, и т. д., но и как линейную комбинацию любых других функций, подобранных с определенными коэффициентами. Выбор же предельных структур может быть сделан только на основе химических соображений и аналогий, т. е. здесь концепция резонанса по существу не дает ничего нового по сравнению с концепцией мезомерии. [c.126]

    Современное состояние квантовой химии и возможности вычислительной техники предопределили два подхода к теоретическому исследо ванию реакционной способности. Как видно из предыдущей главы, первый из их, связанный с расчетом потенциальных поверхностей и энергии активации, применим лишь к реакциям относительно небольших молекулярных систем преимущественно в газовой фазе. Однако повседневная химическая практика требует рассмотрения значительно более сложных реакций, причем проходящих, в основном, в растворах. Именно эта практическая необходимость и привела к появлению так называемого метода индексов реакционной способности. Существует определенная аналогия между расчетами потенциальных поверхностей и методом индексов реакционной способности, с одной стороны, и строгими кинетическими исследованиями простейших газофазных реакций с определением абсолютных констант скоростей отдельных элементарных стадий и относительными исследованиями реакционной способности, использующими различные корреляционные соотношения, принятые в органической химии — с другой стороны. Эта аналогия еще более углубляется, если учесть то обстоятельство, что в основе как метода индексов реакционной способности, так и корреляционных уравнений органической химии лежит чисто эмпирический принцип линейности свободных энергий. Этот принцип является отражением качественного правила, на котором с самого начала основывалась органическая химия подобные вещества реагируют сходно, а сходные изменения в строении приводят к сходным изменениям в реакционной способности. Он устанавливает линейную связь между изменениями свободных энергий активации л свободными энергиями, определяю- [c.206]

    Проверка методик на искусственных смесях показала, что систематические погрешности незначимы (И = 0,99ч-1,01), а уровень с.оучайных погрешностей (siy=0,l) удовлетворяет требованиям анализа чистых веществ на микропримеси. Полученные данные свидетельствуют о целесообразности сочетания ионометрии с предварительным концентрированием определяемых компонентов из водно-солевых растворов эвтектического состава, в том числе-для многоэлементных анализов (С1 и Вг в KNO3) и определения химических аналогов основы (F в sl) [207]. [c.130]

    Получение мутантов, способных к сверхпродукции промежуточных продуктов метаболизма Индукция определенных ферментативных процессов Ингибированная ферментация Направленный синтез из предшественников в обход метаболического контроля Биокатализ по завершении роста Одностадийные превращения, позволяющие обойтись без очистки фермента или принятия мер по сохранению его стабильности Многостадийные процессы ферментативной конверсии Биокатализ in vitro Использование очищенного фермента для одностадийной конверсии какого-либо природного субстрата Одностадийное образование химических промежуточных продуктов из неприродных субстратов с использованием очищенных ферментов с широким спектром действия Многостадийные полусинтетические метаболнтические процессы Химический катализ на основе биологических принципов Создание химических аналогов ферментативных процессов Получение химических катализаторов с биологической специфичностью (образование биоорганических комплексов ) [c.134]

    Строении прочно вошло в литературу и является одним ий важнейших понятий современной теоретической химии. Было бы неправильно думать, что понятие о химическом строении уже существовало в химии и роль Бутлерова сводится только к тому, что он предложил для него новый термин. Правильную точку зрения высказывает финский химик Э. Гьельт в своей капитальной Истории 0 рганиче-ской ХИМИИ То, что Бутлеров ввел здесь, не является просто новым термином. Понятие о химической структуре совпадает в основном с понятием Кекуле о сцеплении ато-М01В и согласуется со взглядами Купера по этому вопросу. Основы этого понятия были даны этими двумя исследователями, однако истинное содержание и границы его не были достаточно ясно высказаны, и, возможно, что, именно вследствие этого, оно было неправильно понято. Благодаря Бутлерову стало ясным, что химическая структура, с одной стороны, является чем-то совершенно иным, чем рациональный состав в понимании теории типов, т. е. не является только выражением отношений аналогий и превращения. С другой стороны, структура ничего не говорит о механическом расположении атомов в молекуле, т. е. не является тем, что Жерар, а также Кекуле (вначале) понимали под строением молекулы , именно истинным расположением их атомов . Напротив, она означает только существующую, но для каждого вещества определенную химическую связь атомов в молекуле [50, стр. 155]. [c.64]

    Если при определении химических формул неорганических соединений Берцелиус в основном исходил из соображений, соответ твующих химическим данным, пользуясь электрохимическими идеями только для подтверждения и расшифровки этих данных, то в случае органических соединений Берцелиус отошел от этого принципа. В 1818 г. из-за отсутствия достаточных эмпирических данных об органических веществах он вообще воздержался от распространения своей электрохимической теории на органические соединения. Но все же, следуя принципу химической аналогии неорганических и органических кислот, он пришел к гипотетическим формулам этих шслот путем отнятия окисла металла от формулы их соли [24, стр. 161]. В 30-х годах, когда накопился достаточный опытный материал, Берцелиус, развивая идеи Лавуазье и исходя из того же принципа химической аналогии, навязал органическим соединениям электрохимическую схему, выросшую на основе изучения неорганических веществ. Он отверг все попытки других химиков исходить из дуалистических соображений вообще при решении вопроса о строении органических соединений. Берцелиус признавал не дуализм вообще, а только такой, который подчинен электрохимической теории. [c.171]

    Ранее было показано, что традиционное проектирование химических производств даже с использованием ЭВМ — весьма сложный и трудоемкий процесс, выполняемый различными специализированными коллективами проектировщиков. При этом один коллектив, например, занимается подбором катализаторов и определением параметров реакторов, другой — разрабатывает методы разделения продуктов хихмического превращения, третий — подбором материалов, оборудования и т. д. с широким привлечением аналогий и типовых решений. Выполненные исследования по отдельным узлам объединяются в технологические схемы и апробируются на лабораторных и пилотных установках. Результаты экспериментальных исследований в порядке обратной связи поступают к проектировщикам и являются основой для внесения изменений и усовершенствований на любой стадии обработки проекта. [c.29]

    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]

    Существование обширных классов органических реакций, которые могут быть формально описаны в тершшах ионных схем, но в которых реально участвуют ковалентные соединения, позволяет говорить об эквивалентности последних карбокатионам и карбанионам. После всего сказанного, когда выясняется, что даже неполярные углеводороды — это чуть ли не то же самое, что органические ионы, может показаться, что все фани здесь зыбки, а аналогии чисто формальны. Это, однако, совсем не так, потому что можно найти твердую химическую основу, позволяюш то устанавливать вполне реальную эквивалетггность ковалентных реагентов карбкатионам и карбанионам (в определенных рамках, разумеется). Такой основой служит разделение всех реагентов, участвующих в гетеролитических реакциях, на два класса электр<х1)илык нуклеофилы. [c.97]

    Установление структуры органических соединений по масс-спектрам включает определение молекулярной массы, природы и количества функциональных групп, строения скелета молекулы и по возможности пространственного строения. Если эти сведения не удается получить при прямом масс-спектрометри-ческом исследовании, то проводят химическую модификацию образца и последующий анализ масс-спектров модифицированных продуктов. Химическое модифицирование может состоять а) в получении соединения, имеющего интенсивный пик М " б) в целенаправленной трансформации функциональных групп путем их защиты или других химических превращений в) в получении соединения, имеющего более характеристический масс-спектр, который легче интерпретировать на основе общих и специфических закономерностей фрагментации г) в получении гомологов или аналогов (в частности, дейтероаналогов) с последующим исследованием сдвига характеристических ионов при переходе от исходного соединения к модифицированному и др. [c.179]

    Трудности третьего типа возникают тогда, когда меченое соединение биологически не идентично немеченому, т. е. когда имеет 1есто так называемый изотопный эффект . К счастью, биологический изотопный эффект имеет ту же самую основу и подчинЯ ется тем же правилам, что и эффекты химических систем поэтому его учет не представляет больших сложностей для химика. В частности, изотопные эффекты обычно проявляются только у изотопов водорода. Следует иметь в виду, что радиоактивные изотопы обычно занимают только небольшую часть меченых полох<ений . Так, в образце [ 1- С,2-ЗН] ацетата большая часть молекул не содержит ни одного изотопа, практически нет молекул, имеющих оба изотопа, и совершенно отсутствуют соединения, содержащие более одного атома трития. Так, если образец превращается химическим или биологическим путем в СНС СОК, не следует ожидать, что 2/3 всего количества трития будет потеряно наиболее вероятный результат будет зависеть от тонких деталей механизмов превращений. Ситуация складывается совершенно иначе, если все возможные положения действительно заняты атомами изотопа, как это обычно бывает в случае тяжелых изотопов, например [2-2Нз] ацетата. Так, для определения числа атомов водорода, переносимых вместе с атомом углерода в процессе С-метилирования, обычно используют [Ме-2Нз] метионин (при этом основным методом анализа служит масс-спектрометрия). Стереоспецифическое введение метки, например частичное включение в прохираль-ную СНг-группу, широко применяется для изучения стереохимии процессов биосинтеза. В любом случае, однако, следует помнить, что скорость реакций меченых соединений может отличаться от скорости реакций немеченых аналогов, и интерпретировать результаты с необходимой осторох<ностью в общем случае предпочтительным является эксперимент, дающий ответ типа да — нет, а не тот, который можно интерпретировать только на основе неопределенных в количественном отношении изотопных эффектов. [c.469]

    Типичным примером искусственного создания совершенно новой области для исследования может служить химия фторорганических соединений. Эта область возникла из чисто академического вопроса, сродни детскому любопытству а как будут выглядеть органические соединения, если в них все большее число атомов водорода замещать на атомы фтора В свое время (в 1920—30-х годах) это была довольно трудоемкая область исследования, и сложность синтеза перфторированных органических соединений, казалось бы, навсегда предопределяла их судьбу — остаться в сфере интересов чистой науки , без перспектив практического использоваьшя. Однако именно в этой области исследователей ожидали не только открытия в области теории, но и появление новых классов веществ с уникальными физико-химическими свойствами. Среди этих веществ следует упомянуть фторопласты [34], полимеры с исключительным набором полезных свойств, не заменимые в этом отношении никакими из известных природных или искусственных материалов фреоны, на протяжении десятилетий служившие основой холодильной и аэрозольной техники перфторированные производные типа перфтортетра-гидрофурана, неожиданно оказавшиеся великолепными растворителями — переносчиками кислорода (на основе последних и были разработаны искусственные кровезаменители, знаменитая голубая кровь ). Несколько позднее была открыта еще одна область возможного практического применения фторпроизводных, на этот раз в медицине. Было обнаружено, что фторсодержащие аналоги природных метаболитов, которые почти неотличимы от неф-торированных соединений по своим базовым структурным характеристикам, являются хорошими антиметаболитами — ингибиторами соответствующих ферментных систем, так что результатом их воздействия на клетку является блокирование определенных биохимических функций. Многие сотни такого [c.56]

    Не существующий в природе насыщенный углеводород, соответствующий фарнезолу, называют фарнезаном. Углеродный скелет фарнезана лежит в основе химического строения некоторых важных биологически активных веществ. Среди них выделяются ювенильные гормоны (ЮГ) насекомых. Как известно, жизненный цикл насекомого представляет собой чередование нескольких стадий. Из яйца вылупляется личинка, которая большей частью имеет вид интенсивно питающейся гусеницы. На определенной стадии развития личинка превращается в неподвижную и непитающуюся куколку. Последняя в результате полной перестройки своих органов и тканей преображается в имаго, т.е. бабочку или муху. Эта смена форм называется метаморфозом. Она управляется несколькими гормонами. Функция ювенильного гормона состоит в поддержании личиночной стадии личинка тогда превращается в куколку, когда концентрация ЮГ в теле насекомого достигает определенного низкого или нулевого значения. Если искусственно путем добавки извне увеличить эту концентрацию, окукливание на нужной стадии задержится, личинка принимает уродливые формы и насекомое погибает. Поэтому ювенильный гормон можно использовать для борьбы с вредителями сельского хозяйства. Сам ЮГ неудобен тем, что действует на все виды насекомых без исключения. В связи с этим много усилий прилагается в области синтеза аналогов, которые проявляли бы избирательность лишь к определенным, опасным видам и не действовали бы на виды полезные или безвредные. Биологически активные аналоги ЮГ называются ювеноидами. [c.99]

    Образец 34 содержит химические соединения, приведенные в табл 3 31, и различные их метилпроизводные с числом метильных Фупп от 1 до 4 Представление структур в отдельных частях этой таблицы дано в порядке их приоритетности для каждой брутто-формулы Что касается алкилбензолов, то среднее число атомов углерода заместителей при гидроочистке уменьшается в них от 6 до 4 Фрагментный состав целевого продукта (образец 35), его узких (образцы 36-52) и широких (образцы 53-61) фракций даны в табл 3 32 Ввиду малой ароматичности этих образцов раздельное определение СНдр и С р затруднительно Групповой состав и молекулярно-массовое распределение для образцов 36-52 представлены в табл 3 33 На основе этих данных частично установлен компонентный состав В табл 3 34 приведены структуры наиболее представительных компонентов (указаны родоначальники рядов) Последовательность их расположения в каждой строке таблицы соответствует содержанию этих классов соединений в целевом продукте Так, для С Н2 4 содержание гидрированных аналогов флуорена выше, чем пергидроаценафтена, а пергидрофенантрена больше, чем пергидроантрацена (в 3-5 раз) Трудность точного количественного определения отдельных компонентов обусловлена их громадным изомерным многообразием даже в узких фракциях Совокупность результатов исследования фрагментного и группового составов объектов обеспечивает достаточно надежную информацию о компонентном составе углеводородных смесей, что позволяет рекомендовать разработанный методологический подход для мониторинга разнообразных технологических процессов нефтепереработки как при разработке новых технологий, так и при их дальнейшей оптимизации [c.286]

    Книга Гайнца Беккера Введение в электронную теорию органических реакций представляет собой четкое и ясное изложение электронных представлений о механизмах наиболее распространенных и важных реакций органических веществ, без изложения которых не обходится ни один курс органической химии, ни практика исследователя. В отличие от других книг теоретического направления, обычно ограничивающихся при изложении механизма реакций лишь графикой электронных смещений, книга Беккера, помимо очень удачной графики этого рода, вскрывает физико-химические, термодинамические и электронно-структурные факторы движущих сил реакций. Она вооружает читателя глубокими знаниями и возможностью предвидения. Первые три главы излагают общие теоретические основы проблемы химической связи, распределения электронной плотности в органических молекулах и основные положения кинетики и термодинамики органических реакций с освещением теории переходного состояния и элементарного акта реакции. Первая из этих глав, посвященная квантовомеханическим основам теории химической связи, написана в форме, доступной для химиков-органиков, обычно плохо владеющих высшей математикой. В этой главе некоторым сокращениям подверглось изложение представлений о модели атома Бора, имеющих лишь исторический интерес. В этой же главе излагаются основы квантовой механики, где Беккер подходит к уравнению Шредингера, используя аналогию с волновым уравнением. Эта аналогия имела определенное эвристическое значение при создании волновой механики. Однако она, естественно, не отражает важнейших особенностей уравнения Шредингера и вряд ли облегчает его -восприятие. Поэтому взамен этой аналогии мы изложили основы квантовой мех-лники в доступной форме, аналогично тому, как это Сделается в основных современных курсах квантовой химии. / [c.5]

    Для динамических методов имеет решающее значение, являются ли реагирующие твердые вещества кристаллическими или частично аморфными. Условия, постулированные Тамманом, которые лежат в основе термических методов, непосредственно относятся только к кристаллическим порошкам. Вопрос, можно ли.эти термодинамические условия перенести также на реакции, в которых участвуют изотропные стекла или гели, представляет собой самостоятелькую проблему и имеет большое практическое значение. Такие фазы обычно-обладают значительно повышенной реакционной способностью по сравнению с анизотропным материалом такого же химического состава, что, например, наблюдал Хедвалль (см. О. I, 65) при взаимодействии извести с основными силиката.ми свища в стекловидном состоянии. Реакции с участием таких фаз протекают при иных температурах аморфные фазы приобретают реакционную способность, когда достигается достаточно большая подвижность структурных элементов. Поэтому нельзя переносить температуру начала реакции, определенную для коллоидного или стекловидного кремнезема, на реакции с жристаллическим кварцем, как это сделал Дикергоф в своем фундаментальном исследовании взаимодействия окиси кальция с осажденным и обожженным кремнеземам. Тем не менее в первом приближении, во многих случаях можно проводить сравнение между реакциями стекловидных материалов и реакциями кристаллических реагентов. Яндер и его сотрудники помимо кварца применяли также осажденный кремнезем, а Хедвалль сравнивал взаимодействие извести с кварцевым стеклом и с кристаллическими модификациями кремнезема. Иногда можно провести грубую аналогию между полиморфными превращениями и интервалом превращения стекла, иапример в том случае, когда рассматриваются предварительные эксперименты с целью определения условий смачивания поверхности стекла в атмосфере различных газов (см.А. П, 273). [c.719]

    Первоначальное предположение об образовании с катали-.затором промежуточных соединений (по аналогии с катализом в гомогенной системе) и в настоящее время является основой существующих теорий гетерогенного катализа. Согласно общепринятому определению, катализаторами являются вещества, а присутствии которых скорость реакции увеличивается, а сами они после реакции остаются химически неизмененными, В холе реакции атомы и молекулы катализатора на поверхности соприкосновения с газовой фазой принимают щастие в реакции. Очевидность возникновения каталитических реакций на поверхности катализатора явилась стимулом для интенсивных исследований свойств этих поверхностей и происходящих на них явлений. [c.494]

    В ряде работ мы встречаемся с попыткой рассмотреть аналогии соединений лишь со структурной точки зрения, что, на наш взгляд, является несколько формальным. Так, Парте [7] провел классификацию тетраэдрических соединений различного типа на основе корреляции структурного типа соединения и валентной электронной концентрации, не рассматривая химических и физических особенностей этих соединений. Для тетраэдрических структур в соответствии с правилом Гримма — Зоммерфельда число валентных электронов на атом должно быть равно четырем, если каждый атом связан с четырьмя другид и. Среди таких тетраэдрических структур находятся как нормальные структуры, так и дефектные, к которым при определенных допущениях также приложимо правило Гримма — Зоммерфельда. Парте [7], Шуберт и др. [5] рассматривают структуры соединений A B i и их аналогов А В как варианты нормальной тетраэдрической структуры, в которой атомы неметалла имеют менее четырех соседних атомов. В соединениях, в которых лишь атомы одного вида имеют координационное число 4, дефекты структуры Парте [7] обозначает в формульном составе нулем, который соответствует существованию в соединении несвязывающих орбиталов. Вид формул двойных дефектных соединений этого типа, по Парте [7], будет для А В" — З4О64 и [c.192]


Смотреть страницы где упоминается термин Определение химических аналогов основы: [c.213]    [c.239]    [c.56]    [c.251]    [c.20]    [c.569]    [c.276]    [c.56]    [c.56]    [c.251]    [c.96]    [c.36]   
Смотреть главы в:

Анализ чистых веществ с применением кристаллизационного концентрирования -> Определение химических аналогов основы




ПОИСК





Смотрите так же термины и статьи:

Определение основы



© 2025 chem21.info Реклама на сайте