Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Башни раствора щелочи в производстве

Рис. 10.2. Принципиальная схема производства хлората натрия хлорированием каустической соды i — электролизер 2 и 3 — башни хлорирования растворов щелочи 4—реактор для разложения С10 в хлорид-хлоратном растворе 5 — выпарной аппарат 6 — подогреватель упариваемых хлорид-хлоратных растворов . 7 — нутч-фильтр для отделения кристаллов хлорида натрия 8 — вакуум кристаллизатор 9 — центрифуга /О —емкость для сбора маточных растворов 7/— подогреватель маточных растворов /г —емкость для донасыщения маточного раствора хлоридом натрия 13 — рамный фильтр. Рис. 10.2. Принципиальная <a href="/info/149476">схема производства хлората натрия</a> хлорированием <a href="/info/18252">каустической соды</a> i — электролизер 2 и 3 — <a href="/info/639789">башни хлорирования</a> <a href="/info/122345">растворов щелочи</a> 4—реактор для разложения С10 в <a href="/info/639806">хлорид-хлоратном растворе</a> 5 — <a href="/info/93861">выпарной аппарат</a> 6 — подогреватель упариваемых <a href="/info/639806">хлорид-хлоратных растворов</a> . 7 — <a href="/info/94481">нутч-фильтр</a> для отделения <a href="/info/1177761">кристаллов хлорида натрия</a> 8 — <a href="/info/93808">вакуум кристаллизатор</a> 9 — центрифуга /О —емкость для сбора <a href="/info/8348">маточных растворов</a> 7/— <a href="/info/1272764">подогреватель маточных растворов</a> /г —емкость для донасыщения маточного <a href="/info/348638">раствора хлоридом натрия</a> 13 — рамный фильтр.

    Здесь возникла некоторая полемика вокруг выступления т. Станкевича. Я хотел в связи с этим сказать несколько слов. Вопрос о защелачивании бензина и об удалении из него сероводорода не является, может быть, вопросом, непосредственно касающимся темы настоящего совещания. Однако он настолько существенен для производства, что сам факт выступления т. Станкевича не случаен. В свое время БашНИИ НП разработал метод регенерации щелочи продувкой воздухом. Этот метод у нас на Ишимбайском заводе осуществлен на промышленной установке. Установка эта освоена, и регенерация, действительно, имеет место. С какими трудностями завод столкнулся при ее осуществлении Первоначально предполагалось (по данным БашНИИ НП) регенерированную щелочь применять для защелачивания бензина. Однако работники завода не решались это сделать, так как опасались наличия элементарной серы в регенерированном растворе, что могло привести к порче продукции. Таким образом, этот первый вариант так и не был проверен в промышленных масштабах, но было сделано другое. Регенерированная щелочь была использована для подготовки нефти. В процессе подготовки нефть нужно нейтрализовать с этой целью и стали применять регенерированную щелочь. Однако здесь нас постигла неудача. Специальным лабораторным исследованием мы выяснили причину этой неудачи. На завод поступает несколько сортов нефтей. Лабораторными опытами и практикой завода доказано, что с при- [c.224]

    Нитрозные газы, уходящие из кислотных абсорберов в производстве азотной кислоты и содержащие 0,5—1,5 объемн. % окислов азота и 3—5 объемн. % кислорода, проходят последовательно через две абсорбционные башни, орошаемые циркулирующим щелочным раствором. Газ просасывается через абсорбционную систему вентилятором и, пройдя щелочные башни, содержит не более 0,2% окислов азота. Обычно в качестве щелочи применяют соду, более дешевую, чем едкий натр. [c.230]

    Очистка конвертированного газа от СО2 производится, как правило, жидкими щелочными сорбентами (водными растворами карбонатов натрия и калия и щелочей). Обычно абсорбцию газов ведут при низкой температуре, что связано с уменьшением растворимости газов в жидкостях при повышении температуры. Так, вначале газ промывают холодной водой под давлением 1,5—2,5 МПа в башнях с насадкой, при этом поглощается большая часть СО2. При снижении давления до атмосферного растворимость газов снижается и из воды десорбируется газ, содержащий около 80% СО2, 10% Н2, а также N2, Н2 и др. (этот газ используют далее для производства карбамида и других продуктов). [c.263]


    Натриевая селитра (КаКОз) содержит 15—16% азота. Получают ее на заводах при производстве азотной кислоты из аммиака путем щелочной абсорбции окислов азота. Непоглощенные водой в окислительных башнях нитрозные газы — N0 и N02 — пропускают через поглотительные башни, орошаемые раствором соды или натриевой щелочи. В результате химического взаимодействия образуется смесь нитрата и нитрита натрия  [c.200]

    Очистка коншертированного газа от СО2. В газе после конверсии СО содержится от 17 до 30% диоксида углерода, который выделяется, как правило, жидкими сорбентами водой, этаноламина-ми, растворами щелочей и т. п. СО2 под давлением растворяется в воде значительно лучше, чем другие компоненты конвертированного газа. На этом принципе основана водная очистка от СО2 промывкой газа водой в башнях с насадкой при 2—3 МПа. Вытекающая из башни вода вращает турбину, насаженную на одном валу с насосом, подающим воду на башпю. Таким образом регенерируют около 60% электроэнергии, затрачиваемой на подачу воды в башню, В турбине давление снижается до атмосферного, растворимость газов уменьшается и из воды десорбируется газ, содержащий около 80% СО2, 11% Н2, а также N2, H2S и др. Этот газ целесообразно использовать в производстве карбамида, сухого льда или других продуктов. Вода после охлаждения в градирнях возвращается на орошение в башни. Основной недостаток [c.86]

    Очистка конвертированного газа от СОг производится, как правило, жидкими сорбентами. При этом используют свойство СОг хорошо растворяться в воде, аммиачной воде, растворах щелочей, моноэтаноламине и т. д. При водной очистке конвертированный газ под давлением 16—28 ат поступает снизу в башню с насадкой, орошаемой холодной водой. Вода, содержащая растворенную в ней углекислоту, из башни направляется в турбину, которая вместе с электродвигателем вращает вал насоса, нагнетающего в башню воду. Таким образом на 60—65% сокращается расход электроэнергии на подачу воды в башню. Углекислый газ, выделяющийся из воды при снижении давления до атмосферного, используется для производства мочевины и сухого льда. После водной очистки в конвертированном газе содержится 2—3% углекислого газа, который удаляют промывкой раствором едкого натра. В качестве растворителя СОг вместо воды в последнее время применяют растворы этаноламинов моноэтаноламин ЫНгСНгСНгОН и диэтаноламин ЫН(СН2СНгОН)г. Образовавшиеся при адсорбции СОг карбонаты и бикарбонаты амина сравнительно легко разлагаются при нагревании с выделением СОг. Раствор этаноламина после регенерации вновь направляется на орошение насадки абсорбционных башен. [c.73]

    Очистка конвертированного г за от Oj. В газе после конверсии СО содержится от 17 до 30% двуокиси углерода, которая выделяется, как правило, жидкими сорбентами водой, этаноламинами, растворами щелочей и т. п. Oj под давлением растворяется в воде значительно лучше, чем другие компоненты конвертированного газа. На этом принципе основана водная очистка от СО2 промывкой газа водой в башнях с насадкой при 2 10 —3 10 Н/м . Вытекающая из башни вода вращает турбину, насаженную на одном валу с насосом, подающим воду на башню. Таким образом регенерируют около 60% электроэнергии, затрачиваемой на подачу воды в башню. В турбине давление снижается до атмосферного, растворимость газов уменьшается и из воды десорбируется газ, содержащий около 80% СО , 11% Hg, а также N2, HjS и др. Этот газ целесообразно использовать в производстве карбамида, сухого льда или других продуктов. Вода после охлаждедия в градирнях возвращается на орошение в башни.. Основной недостаток водной очистки заключается в значительном расходе электроэнергии и больших потерях водорода. Поэтому в современных схемах применяются другие поглотители, обладающие большей, чем вода, сорбционной емкостью и селективностью. [c.38]

    Очистка конвертированного газа от СО9 про-изводится, как правило, жидкими сорбентами. Углекислый газ растворяется в воде значительно больще, чем другие компоненты конвертированного газа, особенно хорощо он поглощается щелочами. С целью экономии щелочей очистку от СОг ведут в две стадии. Сначала газ промывают холодной водой под давлением 16—25 ат в башнях с насадкой, при этом поглощается большая часть СОг. Вытекающая из башни под давлением вода вращает турбину, насаженную на одном валу с насосом, подающим воду на башню (см. рис. 12 в гл. III). Таким образом регенерируется около 607о энергии, затрачиваемой на подачу воды в башню. В турбине давление снил<ается до атмосферного, растворимость газов уменьшается и из воды десорбируется газ, содержащий около 80% СОг, И% Hj, а также N2, НгЗ и другие. Этот газ целесообразно использовать в производстве карбамида, сухого льда или других продуктов. Вода после охлаждения в градирнях возвращается на орошение башни. Остатки углекислого газа удаляются из азотоводородной смеси при промывке раствором едкого натра или других поглотителей, имеющих большую абсорбционнутЬ емкость по СОг, чем вода. [c.239]



Смотреть страницы где упоминается термин Башни раствора щелочи в производстве: [c.524]   
Коррозия и защита химической аппаратуры Том 6 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

БашНИИ

Башни

Башни в производстве

Щелочи

растворе щелочи



© 2025 chem21.info Реклама на сайте