Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочи при очистке газов

    ОЧИСТКА ГАЗА ОТ МЕРКАПТАНОВ водными РАСТВОРАМИ ЩЕЛОЧЕЙ [c.35]

    Технологическая схема щелочной очистки газа от меркаптанов мало отличается от схемы очистки моноэтаноламином, только регенерация раствора щелочи проводится открытым водяным паром или продувкой горячим воздухом, или последовательно тем и другим. В случае очистки газов от диоксида углерода равновесное давление газа над абсорбентом равно нулю, что позволяет осуществлять многократную циркуляцию абсорбента с выводом части его из системы и дозированием свежего. Такая схема щелочной доочистки газов пиролиза, используемая в этиленовом производстве на установке ЭП-300, приведена на рис. ХП1-1. Газ после IV ступени турбокомпрессора (с установки ЭП-300) при давлении [c.115]


    Для очистки природного газа от СОг и получения водных растворов кислот или щелочей в качестве абсорбента используется вода. Очистка газов от СО2 осуществляется при температуре 287 К и давлении 2,84 МПа в насадочном абсорбере с высотой слоя насадки 17,7 м и скоростью газа в аппарате 0,034 м/с при этом обеспечивается извлечение СОг ДО 94,3 %. Улавливание аммиака водой с получением 10% аммиачной воды позволяет осуществить очистку газов с 40 % до 0,2 % при степени извлечения [c.488]

    Очистка газов. Цель очистки— удаление серосодержащих соединений. Очистку газа щелочыо в настоящее время проводят редко. Промывке раствором щелочи подвергают, например, сжиженные пропан-пропиленовые и бутан-бутиленовые фракции для удаления серосодержащих и кислых соединений. Для очистки газсз обычно используют регенерируемые поглотители. Наиболее распространенные из них —этаноламины, метилдиэтаноламины и ме-тилпирролидо.н. Последний рекомендуют для очистки газов, содср- [c.58]

    Некоторые металлы и сплавы подвергаются значительному разрушению под действием растворов кислот и щелочей, применяемых при очистке газа. Щелочи низкой и средней концентрации не вызывают коррозии обыкновенной стали. При повышении концентрации щелочи начинается выщелачивание с поверхности металла сульфидов, силикатов и окислов. Это явление приводит к снижению механической прочности и жаростойкости металлов. На детали, находящиеся под повышенными механическими нагрузками, например вращающиеся части центробежных насосов, коррозионное действие щелочей усиливается. [c.32]

    Активная окись алюминия. Активная окись алюминия используется для производства катализаторов процессов риформинга, изомеризации, гидроочистки, гидрокрекинга и др. Широкое применение находит она также в процессах адсорбции (для осушки газов, очистки масел, очистки газов и жидкостей от фторсодержащих соединений). В промышленных масштабах ее получают переосаждением гидрата глинозема путем его растворения в кислотах (серной, азотной) или в щелочи (едком натре) с последующими гидролизом, формовкой, сушкой и прокаливанием. Свойства синтезированной окиси зависят от структуры и морфологии исходной гидроокиси, а также от условий термообработки. Существует большое число модификаций окиси алюминия. Их классификация, обозначения, условия получения даны в [30, 31 ]. В промышленности активная окись алюминия [c.387]


    На основании вышеизложенного очистку газов от меркаптанов растворами щелочей осуществляют в сочетании с процессами аминовой очистки на первой ступени производится извлечение из сырья H2S и СОз, второй ступени - меркаптанов. [c.36]

    ЖЕЛЕЗА(111) ОКСИД РегОз (окись железа). Существует в 3 крист, модификациях (а, у и б) пл 1563 С (с разл.) не раств. в воде. а-РегОз (темно-красный) получ. окисл. Ре выше 200 °С, обжигом пирита в природе — минерал гематит (красный железняк). 7-РезОз (коричневый) выше 400 °С переходит в а-форму получ. окисл. ре или РезО< ниже 200 °С. б-Ре20з получ. окисл. солей Ре + в щелочах. Примен. а-РегОз — сырье для получ. Ре, компонент футеровочной керамики, цемента, термита, поглотит, массы для очистки газов, ферритов, желтых (охра, сиена), красных (сурик, мумия) и коричневых (умбра) пигментов для красок, полирующего материала (крокуса) у-РегОз — рабочий слой магн. лент. [c.200]

    Аналогичная схема щелочной очистки газов от диоксида углерода используется на установках производства инертного газа. Очистка проводится 10 %-ным раствором щелочи. [c.116]

    Процессы химической абсорбции характеризуются высокой избирательностью по отношению к кислым компонентам и позволяют достигать высокой степени очистки газа от Нг5 и СО2. Сераорганические соединения при использовании растворов аминов извлекаются в небольших количествах только за счет растворения их в жидкой фазе, а в случае, например, использования растворов щелочей, достигается тонкая очистка от сераорганических соединений. [c.13]

    Натр едкий (К аОН) имеется в цехах в твердом виде и в виде 2—3°/о-ных водных растворов. Применяется для очистки газа от СО2 и НгЗ. Растворы едкого натра (каустической соды) вызывают химичеокие ожоги кожи. Действие раствора тем сильнее, чем выше его концентрация и температура. При попадании щелочи на кожу следует обмыть пораженный участок большим количеством воды под напором. Особенно опасно попадание едкого натра В глаза. При попадании щелочи в глаза необходимо промыть их струей чистой воды, затем 2— 2,5°/о-ным раствором борной кислоты, снова водой, закапать касторовое масло и обратиться в медпункт. ПДК щелочных аэрозолей в пересчете на едкий натр — 0,5 мг/м1 [c.23]

    Блоки очистки газов и регенерации раствора МЭЛ (для установок, имеющих эти узлы). К выводу на режим указанных блоков приступают после промывки систем конденсатом водяного пара. Эта операция проводится для того, чтобы удалить из системы возможные механические примеси, следы щелочи и солен, которые при эксплуатации блока могут вызвать вспенивание раствора МЭА. [c.192]

    При очистке коксового газа с начальной концентрацией 20 г на 1 м газа до конечной концентрации 1,5—2 г/м (по технологическим нормам) требуется пенный абсорбер с 13—14 полками, а очистку газа для бытовых нужд (до 0,02 г/м ) можно осуществить в аппарате с 38 полками. При этом объем пенного абсорбера меньше объема насадочного скруббера для тех же условий в 7—8 раз. Отметим, что применение пенного режима для очистки газов также оказалось эффективным при поглощении сероводорода щелочью и известковым молоком. [c.153]

    I — барабаны со щелочью 2 — бак-растворитель 3 — емкости 4 — фильтр для очистки воды от механических примесей 5 — емкость для кислотного регенерационного раствора 6, 1 — ионообменные колонны 3 — емкость для щелочного регенерационного раствора 9 — сборники очищенной воды — питательный бак —фильтры для очистки газов от щелочного тумана 12 — аппарат для каталитической очистки водорода 13 — аппарат дожигания примесей водорода и кислорода 14 — холодильники газов 15 — осушители газов —ресиверы водорода и кислорода /7 — клапанные регуляторы давления газов 18, 19 — кислородный и водородный промыватели газов — регуляторы перепада давления газов 20 — разделительные колонны 21 — электролизер 22 — баллоны с азотом для продувки электролизера И — преобразователь тока [c.29]

    При содержании серы в сырье пиролиза менее 0,1% (масс.) можно ограничиться для очистки газа <ак от H2S, так и от СО2 промывкой водным раствором щелочи. При этом частично удаляется сероокись углерода  [c.171]

    Многие методы очистки основываются на химической природе сероводорода, являющегося слабой кислотой. Так, одним нз методов связывания сероводорода можно считать поглощение его раствором едкого натра с образованием сульфогидрата натрия и воды. Так как едкий натр при этом процессе расходуется безвозвратно, а образующийся сульфогидрат представляет собой ядовитый, трудно ликвидируемый отброс, то щелоч-ный метод очистки газов широкого распространения ые получил. Некоторое удешевление дает замена едкого натра известковым молоком. [c.248]


    Очистка газов. Газообразные примеси удаляют, пропуская газ через некоторые вещества (часто в виде растворов), вступающие в химические реакции с данной примесью и не реагирующие с основным газом. Например, если требуется из смеси газов СО и СОа удалить последний, то пропускают эту смесь через раствор щелочи или карбоната щелочного металла при этом двуокись углерода вступает в реакцию по уравнениям [c.27]

    Особые требования предъявляются к водороду, который пропускается через сосуд. Незначительные загрязнения водорода другими газами могут повести к заметным искажениям потенциала водородного электрода. Наиболее чистый водород получается электролитическим путем. На рис. 56 показана установка для получения водорода. Электролизу подвергается 10—20%-ный раствор едкой щелочи. Электроды изготовляются из никелевой проволоки. Полученный водород последовательно промывается водой, раствором пирогаллола, баритовой водой и концентрированной серной кислотой. После очистки газ поступает в электродный сосуд (см. рис. 55) и, вытеснив избыток раствора, выходит через гидравлический затвор. [c.101]

    При значительном накоплении в циркулирующем растворе МЭА трудно регенерируемых соединений и смолистых веществ наряду с ухудшением степени очистки газа наблюдается частичное разложение МЭА и заметное усиление коррозии оборудования [10]. Для восстановления поглотительной способности раствора МЭА в схемы установок обычно включают аппаратуру для частичной его перегонки в вакууме при остаточном давлении я 6650 Па и температуре 100—120 °С. Количество раствора, отводимого из системы очистки на перегонку, в основном зависит от состава и характера примесей в очищаемом газе, но оно не должно быть ниже 0,5—1% от общего количества циркулирующего в системе сорбента. Для нейтрализации кислых компонентов, которые могут образовываться при вакуумной перегонке раствора за счет разложения МЭА, а также для предотвращения коррозии оборудования в раствор добавляют щелочь (не менее 0,5 кг на 1 кг образовавшихся соединений). [c.62]

    Общий расход щелочи на очистку газов  [c.251]

    Для извлечения из газа СОа применяют растворы щелочей, слабых органических оснований, например моноэтаноламинов, а также воду. На многих заводах грубую очистку газа от СО 2 производят абсорбцией ее водой, а тонкую — раствором NaOH под высоким давлением. Получает широкое распространение поглощение Oj растворами моноэтаноламинов под повышенным давлением. [c.208]

    Очистка газов от тиолов водными растворами щелочей 115 [c.3]

    Блок очистки газов. Трубопроводы и аппараты должны быт заполнены и промыты конденсатом водяного пара. Сброс конденсат из системы проводится до тех пор, пока анализ не покажет отсутстви примесей. Механические примеси, следы щелочи, наличие соле может привести к вспениванию раствора МЭА в процессе эксплуа тации. [c.124]

    Регенерация адсорбента является одним из основных вопросов при адсорбционной очистке, от решения которого зависит возможность применения метода и его стоимость. Для удаления органических веществ с поверхности углей применяют вытеснительную десорбцию. В качестве десорбирующего агента используют воздух, инертные газы, насыщенный и перегретый пар. При использовании воздуха температура не превышает 120—140°С, для перегретого пара 200—300°С, для инертней газов 300—500°С. Соединения удаляют с поверхности активных углей также водными растворами кислот, щелочей и солей. При очистке газов ог соединений фтора адсорбент подвергался регенерации 2—3 % раствором NaOH на 99,5%, 3% раствором Naj Oa —на 60—65 %, 3 7о раствором NH4OH —на 15%, водой —на 18,7%. Потери адсорбента при регенерации—2—4 г/м газа. Расход воды и регенерационного раствора на 1 м адсорбента составил 10 м . [c.486]

    Процесс щелочной очистки газов является экономичным. Однако при высоких концентрациях в газе сероводорода и диоксида углерода (>0,3 %) перед щелочной очисткой следует использовать очистку раствором моноэтаноламина. Сухой газ и пропан-пропиленовая фракция на промышленных установках ЦГФУ и АГФУ, газы регенерации на установках гидроочистки и пирогаз на установке ЭП-300 предварительно очищаются от сероводорода и частично от диоксида углерода раствором моноэтаноламина, затем подвергаются доочистке щелочью от меркаптанов и диоксида углерода. Расход гидроксида натрия при этом не превышает 0,16 кг на 1000 м газа. [c.115]

    Основные мероприятия, обеспечивающие безопасную работу электрос )ильтра, аналогичны применяемым в схемах термоокислительного пиролиза. Отсутствие кис- торода в газах электрокрекинга позволяет значительно упростить системы блокировки. При щелочной очистке газов крекинга от цианистого водорода с последующей регенерацией щелочи все промывные воды дегазируют а специальном аппарате путем продувки воздухом. Тщательность отдувки газов проверяется аналитически. Особое внимание здесь обращается на отсутствие цианистых соединений в отводимом воздухе. [c.107]

    С Юсоб очистки газа от сероводорода и диоксида углерода выбирают в зависимости от содержания этих примесей. При значи-телы ом их количестве чаще всего ведут абсорбцию этаноламина-ми с последующей полной нейтрализацией газов кислотного характера щелочью в скрубберах при небольшой концентрации НзЗ и ССо достаточно промывать газы водным раствором щелочи. Очистка водным раствором этаноламинов основана иа том, что эти органические основания дают с сероводородом и диоксидом углерода довольно стабильные при низкой температуре соли, которые ири нагревании диссоциируют  [c.47]

    Поглощение HjS и Oj из газа обусловливает увеличение удельного расхода циркулирующего в системе раствора и, следовательно, повышение расхода энергии на его регенерацию. Кроме того, увеличение концентрации Naj Og в растворе щелочи ухудшает растворимость меркаптанов, что снижает степень очистки газа от них [2]. [c.36]

    Использование процесса НТМА экономично, так как на тонкую очистку газа от меркаптанов растворами щелочи можно направлять не весь поступающий природный газ, а только выделенную ПБФ, доля которой в перерабатываемом газе не более 3 % по объему. [c.48]

    Выбор того или иного процесса для осуществления перечисленных стадий осуществ яется для каждого ГПЗ индивидуально в зависимости от характеристик сырья и существующих потребностей в определенных продуктах. Например, очистка газа от кислых компонентов может происходить в два этапа очистка от НгЗ и СО2 растворами аминов практически без извлечения меркаптанов и очистка от меркаптанов растворами щелочи или адсорбцией на цеолитах. Той же цели можно достигать и в одну стадию при использовании физикохимических абсорбентов, таких как Укарсол или Экосорб , способных одновременно извлекать Н25, СО2 и сераорганические соединения, хотя в этом случае степень извлечения меркаптанов ниже, чем при защелачивании. [c.177]

    Рис, 7.6. Схема синтеза углеводородов при среднем давлении с рециркуляцией остаточного газа 1-компрессор 2-теплообменник 3-парафи-ноотделители 4, 9-реакторы 5-холодильники масла 6-ороситель-ные холодильники-конденсаторы 7-насосы 8-отстойник 10-установка очистки газа активным углем 1-очищенный синтез-газ 11-парафин П1-вода IV-nap V-щелочь + масло VI-масло VII-свежая щелочь УП1-остаточный газ 1Х-циркулирующий газ [c.118]

    Вполне удовлетворительная очистка газов достигается пугел поглощения сероводорода растворами щелочи. При абсорбции сероводорода водой не удается очист1ггь газы в такой степени, чтобы возможно было удаление их в атмосферу. [c.338]

    Необходимые данные для управления уже технологической схемой поступают с микро-ЭВМ на машину более высокого класса — в данном случае на мини-ЭВМ. На эту же машину собирается информация и с других микро-ЭВМ, задействованных в управлении другими подсистемами сушки, выделения целевого продукта, очистки газов и сточных вод и т. п. Таким образом, система управления представляет собой многокомпьютерную систему. Рассмотрим преимущества использования такой структуры организации системы. Системы локального управления, функционирующие на нижнем уровне иерархии, должны непосредственно использовать получаемую с датчиков информацию для управления процессом. Так, измеряя количество подаваемой кислоты или щелочи, локальная система решает задачу поддержания заданного значения pH в аппарате. В то же время, при наличии большого числа контуров регулирования, целесообразно широко использовать прямое цифровое управление. В результате оказывается выгодным применять как локальные системы регулирования, так и прямое цифровое управление, особенно эффект проявляется в случаях выхода [c.251]

    Для очистки от примесей сконденсированную шестифтори-стую серу испаряют -в газометр, наполненный 5%-ным раствором едкого кали -или едкого натра, и. оставляют в ем газ в течение. 1—2 дней при этом поглощается значительная часть 51р4, аОз, СОа, р2 и других примесей. Можно также проводить очистку газа в динамических условиях, медленно пропуская его через две эффективные промывные склянки (спиральные или с пористыми пластинками), содержащие конщентрированный раствор едкой щелочи. [c.162]

    В связи с накоплением в растворе труднорегенерируемых соединений, а также продуктов полимеризации и разложения МЭА, на установках очистки газа должна быть предусмотрена перегонка части регенерированного раствора со щелочью. Производительность узла перегонки — 0,5—1,0% от скорости циркуляции поглотительного раствора. [c.287]

    Однако эти процессы, как правило, не обеспечивают тонкую очистку газов от различных тиолов., Для этой цели применяют процессы с использованием в качестве поглотителя водных растворов щелочей, гидроксида железа, трибутилфосфата, а также процессы адсорбции и низкотемпературной абсорбции [84—100] . Область применения указанных процессов зависит как от состава газа, так и от конкретных условий производства. Так, использование водных растворов щелочей предпочтительно в тех случаях, когда из пе )ерабатываемого газа не требуется извлекать диоксид углерода. Применение процесса низкотемпературной абсорбции целесообразно для одновременного извлечения из газа тиолов и тяжелых углеводородов. Каталитические процессы чаще всего применяют для одновременного гидрирования тиолов, серооксида углерода и других сероорганических соединений с получением сероводорода и с последующей очисткой газа от H S.. [c.104]

    РИС. XII1-1. Схема щелочной очистки газов с многократной циркуляцией раствора щелочи  [c.115]

    При проектировании новых заводов необходимо исследовать возможность сооружения локальных замкнутых систем сбора и очистки сточных вод с последующим их использованием в производстве. Как показал опыт работы ряда заводов, такие замкнутые системы, исключающие попадание в общие сточные воды завода загрязненных различными веществами вод, следует сооружать для установок ЭЛОУ, коксования в необогреваемых камерах, гидроочистки и гидрокрекинга, селективной очистки масел, производства серы и серной кислоты, карбамидной депарафинизации дизельного топлива, для очистки газов регенерируемыми растворителями и для некоторых других. В некоторых случаях можно передавать сточные воды с одних технологических установок на другие для использования и извлечения содержащихся в них ценных продуктов (например, отработанную щелочь носле защелачивания светлых нефтепродуктов и сжиженных газов можно использовать для обработки нефти или для извлечения из нее фенолов, нафтеновых кислот и др.). [c.201]

    Для удаления диоксида углерода, присутствующего в коксовом газе, ис по.тьзуется нодно-щелочиая илн амыиачно-щелочиая очистки. После очисток содержание основных примесей в коксовом газе составляет не более 0,01— 0.02 см /м N0, не более 10 см>/м СОа, не более 30 см /м сероводорода и других соединений серы и не более 200 см /м ацетилена. [c.75]


Смотреть страницы где упоминается термин Щелочи при очистке газов: [c.71]    [c.101]    [c.48]    [c.313]    [c.126]    [c.175]    [c.173]   
Справочник азотчика Том 1 (1967) -- [ c.264 , c.300 ]

Справочник азотчика Т 1 (1967) -- [ c.264 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Щелочи



© 2025 chem21.info Реклама на сайте