Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки трансляция

    Третий этап синтеза белка - трансляция - происходит на рибосомах. Каждая рибосома состоит из двух частей — большой и малой субчастиц. По химическому составу обе субчастицы представляют собою нуклеопротеиды, состоящие из рибосомных Р1Ж и белков. Рибосомы способны легко распадаться на субчастицы (диссоциация), которые снова могут соединяться друг с другом, образуя рибосому (ассоциация). [c.71]

    Изучение молекулярных процессов, лежаш их в основе переноса наследственной информации, сопряжено со многими методологическими проблемами, которые обусловлены особенностями биосинтеза нуклеиновых кислот, протекающего только на готовой матрице матричный биосинтез). Кроме того, учитывая огромное биологическое значение процессов, протекающих с участием нуклеиновых кислот, многие авторы предпочитают рассматривать их в отдельных разделах курса биохимии. В рамках настоящего пособия процессы переноса генетической информации в живых организмах рассматриваются, исходя из следующих соображений. Прежде всего учитывается, что биосинтезы нуклеиновых кислот представляют собой анаболические процессы, которые целесообразно рассматривать наряду с процессами анаболизма и катаболизма биосоединений данного и других классов. Кроме того, в настоящей главе обсуждается метаболизм нуклеотидов как строительных блоков нуклеиновых кислот. Таким образом, исследование путей биосинтеза нуклеиновых кислот, начиная с нуклеотидов и заканчивая полинуклеотидными цепями, включая их трансформацию, позволяет уяснить взаимосвязь между разными биомолекулами, что, по сути, составляет материальную основу биологической эволюции. Информация, касающаяся общих вопросов биоэнергетики и метаболизма, необходимая для усвоения материала по метаболизму нуклеиновых кислот, дана в предыдущей главе. В следующей главе Обмен белков и аминокислот изложен биосинтез белков трансляция), который протекает на матрице РНК и отражает биологический принцип передачи наследственной информации по цепочке ДНК РНК белок. [c.343]


    БИОСИНТЕЗ БЕЛКОВ (ТРАНСЛЯЦИЯ) [c.188]

    Известно неск. типов РНК. Рибосомные рибонуклеиновые кислоты, связываясь с рибосомными белками, образуют рибосомы, в к-рых осуществляется синтез белка. Матричные рибонуклеиновые кислоты служат матрицами для синтеза белков (трансляции). тРНК осуществляют связывание соответствующей аминокислоты и ее перенос к рибосомам. Обнаружены т.наз. малые ядерные РНК, участвующие в превращ. первичных продуктов транскрипции в функционирующие молекулы т.наз. антисмысловые РНК участвуют в регуляции биосинтеза белка и репликации плазмидных ДНК. В виде РНК представлены геиомы мн. вирусов (РНК-содержащие вирусы), в к-рых матрицами для синтеза РНК служат вирусные РНК. Нек-рые РНК обладают ферментативной активностью, катализируя расщепление и образование фосфодиэфирных связей в своих собственных или др. молекулах РНК. [c.298]

    Биосинтез белков (трансляция) отличается от других типов матричных биосинтезов — репликации и транскрипции — двумя принципиальными особенностями  [c.132]

    СИНТЕЗ БЕЛКА (ТРАНСЛЯЦИЯ) [c.462]

    Биосинтез белков (трансляция) 131 [c.4]

    Накопление, передача и экспрессия (выражение в фенотипе) генетической информации составляют основную тему части IV. В начале описьгоаются эксперименты, показывающие, что ДНК является генетическим материалом, а также история открытия двойной спирали ДНК. Затем следует описание ферментативного механизма репликации ДНК. Далее мы перейдем к экспрессии генетической информации, заключенной в ДНК, начав с описания данных о роли информационной РНК как промежуточного переносчика информации. Затем рассматривается процесс транскрипции, т. е. синтез РНК в соответствии с инструкциями, заключенными в матричной ДНК. Из этого логически вытекает описание генетического кода, т.е. взаимосвязи между последовательностью оснований в ДНК (или в транскрибируемой с нее информационной РНК) и последовательностью аминокислот в соответствующем белке. Генетический код, общий для всех живых организмов, прекрасен своей простотой. Три основания составляют кодон-единицу кода, соответствующую одной аминокислоте. Кодоны в информационной РНК последовательно считываются молекулами транспортных РНК, которые выполняют роль адапторов в син-тезе белка. Далее мы переходим к механизму белкового синтеза, а именно к процессу трансляции, в ходе которого четырехбуквенный алфавит нуклеиновых кислот, в котором каждая буква представлена соответствующей парой оснований, переводится в 20-буквенный алфавит белков. Трансляция происходит на рибосомах и обеспечивается координированным взаимодействием более чем сотни различных высокомолекулярных соединений. В следующей главе описывается регуляция экспрессии генов у бактерий, причем основное внимание уделяется оперо-нам лактозы и триптофана у Е. соН, как наиболее изученным в настоящее время. Далее обсуждаются результаты последних исследований экспрессии генов у более высокоорганизованных организмов (т.е. у эукариот), отличающихся от бактерий (прокариот) более высоким содержанием ДНК и наличием оформленного ядра, что обеспечивает диф-ференцировку клеток. Затем рассматри- [c.15]


    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]

    Рибосома (Ribosome) Клеточная органелла, рибонук-леопротеидная частица, при участии которой осуществляется синтез белка (трансляция). Состоит из двух субчастиц, больщой и малой. [c.559]

    Нуклеиновые кислоты вирусов реа шзуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию). [c.27]

    Мембраны, окружающие ядра эукариотических клеток, защищают связанный с ДНК тонкий механизм контроля от многих происходящих в цитоплазме химических изменений. Кроме того, они позволяют пространственно разобщить две ключевые стадии экспрессии генов 1) синтез РНК по матрице ДНК (транскрипцию ДНК) и 2) использование этих последовательностей РНК для синтеза определенных белков (трансляцию РНК). В прокариотических клетках нет такой компартментации и трансляция РНК с образованием белка происходит по мере образования РНК при транскрипции, начинаясь раньще, чем завершился синтез РНК. У эукариот, напротив (за исключением митохондрий и хлоропластов, которые в этом отнощении, как и в других, ближе к бактериям), указанные этапы пути от гена к белку строго разобщены транскрипция происходит в ядре, трансляция - в цитоплазме. РНК, прежде чем включиться в процессы синтеза белка, должна покинуть ядро. Для этого, находясь в ядре, РНК претерпевает сложный процесс созревания (процессинг), в ходе которого одни части молекулы РНК удаляются, а другие модифицируются. [c.41]

    Рассмотренные в предыдущих главах III части исследования перехода свернутой белковой цепи в развернутую неструктурированную форму и обратного перехода флуктуирующей полипептидной цепи в исходную компактную трехмерную структуру позволили сформулировать фундаментальное положение о том, что нативная конформация белковой молекулы отвечает равновесному состоянию и, следовательно, не зависит от конкретных внешних условий и путей свертывания (in vivo или in vitro), т.е. от предыстории, а всецело определяется составом и порядком расположения аминокислот. Было доказано, что все необходимые сведения о физиологически активном пространственном строении белка и его конформационных возможностях заключены в аминокислотной последовательности. В процессах свертывания и развертывания полипептидной цепи проявляется непосредственная связь между химическим и пространственным строением молекулы белка. Трансляция линейной последовательности в трехмерную структуру возможна, однако, только при определенных физиологических условиях. При их соблюдении процесс свертывания осуществляется спонтанно в том смысле, что принятие белком своей равновесной нативной конформации не требует специального морфогенетического молекулярного аппарата, как это имеет место, например, в случае пространственной организации молекул ДНК (о роли шаперонов в свертывании белков см. гл. 14). [c.431]

    Цикл лимонной кислоты, синтез АТР Синтез белка (трансляция мРНК) [c.15]

    Рибосомы. Рибосомы осуществляют синтез белков — трансляцию матричной, или информационной, РНК (мРНК)7 На электронных фотографиях они выглядят округлыми частицами диаметром 20 — 30 нм. Каждая рибосома состоит из двух нуклеопротеиновых субъединиц. В цитоплазме растительных клеток находятся,, 80 8 рибосомы, состоящие из 40 и 60 8 субъединиц, в хлоропластах — 70 8 ибосомы, а в митохондриях — 78 — 80 8 рибосомы, отличные от цитоплазматических и хлоропластных. Субъединицы рибосом, образованные в ядрышке, поступают в цитоплазму, где происходит сборка рибосом на молекуле мРНК. [c.19]


    Согласно ей одиночные цепи ДНК служат матррщами при синтезе комплементарных молекул (репликация). Далее смысловая цепь ДНК конкретного гена служит матрицей для синтеза точного транскрипта (пре-мРНК) соответствующего гена (транскрипция). Затем следует процесс созревания матричной РНК (процессинг), при котором происходит модификация молекулы и сплайсинг. Описанные события происходят в ядре клетки (рис. IV. 16). Зрелая иРНК выходит в цитоплазму, где на рибосомах осуществляется процесс перевода информации, записанной в последовательности иРНК, в аминокислотную последовательность соответствующего белка (трансляция). [c.73]


Смотреть страницы где упоминается термин Белки трансляция: [c.517]    [c.268]    [c.29]    [c.94]    [c.37]    [c.37]    [c.136]    [c.19]    [c.37]    [c.37]    [c.94]    [c.486]    [c.109]   
Химический энциклопедический словарь (1983) -- [ c.587 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.587 ]

Гены и геномы Т 2 (1998) -- [ c.186 , c.187 ]




ПОИСК







© 2025 chem21.info Реклама на сайте