Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компартментация

    Основные различия между клетками прокариот и эукариот по составу и способам компартментации (от англ. ompartment - отсек) приведены в табл. 2.5. [c.40]

    Роль компартментации (пространственного разделения) метаболических процессов в клетках эукариот, в том числе в клетках млекопитающих, трудно переоценить. Локализация специфических метаболических процессов в цитозоле или в клеточных органеллах облегчает независимую регуляцию этих процессов. Развитая компартментация метаболических процессов особенно характерна для высших форм живых организмов — она позволяет осуществлять [c.103]


Рис. 8-68. Компартментация аппарата Гольджи. По мерс продвижения сквозь тесно сгруппированные цистерны стопки Гольджи белки претерпевают ковалентные модификации. Транс-сеть Гольджи (ТОК) представляет собой трубчатый ретикулум, который работает прежде всего как ориентировочный пункт. Локализацию каждой изображенной здесь ступени пропессинга удалось определить, сочетая различные методы, включая субфракционирование мембран аппарата Г ольджи и электронную микроскопию после окраски антителами к некоторым ферментам процессинга. Рис. 8-68. Компартментация <a href="/info/97362">аппарата Гольджи</a>. По мерс продвижения сквозь тесно сгруппированные цистерны <a href="/info/509383">стопки Гольджи</a> белки претерпевают <a href="/info/100411">ковалентные модификации</a>. Транс-сеть Гольджи (ТОК) представляет <a href="/info/1795776">собой</a> трубчатый ретикулум, который работает <a href="/info/1903422">прежде всего</a> как ориентировочный пункт. Локализацию каждой изображенной здесь ступени пропессинга удалось определить, сочетая <a href="/info/113103">различные методы</a>, включая субфракционирование <a href="/info/76305">мембран аппарата</a> Г ольджи и <a href="/info/12327">электронную микроскопию</a> после окраски антителами к <a href="/info/1649198">некоторым ферментам</a> процессинга.
    Механизмы первого типа (так называемая компартментация) более распространены у эукариот (см. гл. 2) в связи с локализацией ферментов в субклеточных органеллах митохондриях, лизосо-мах и т.д. Однако и в клетках прокариот возможны определенные виды компартментации  [c.98]

    Основные различия между клетками прокариот и эукариот по составу и способам компартментации обобщены в табл. 5. [c.20]

Рис. 1 -9. Схема, демонстрирующая эволюционное преимущество компартментации В смешанной популяции самореплицирующихся молекул РНК, способных направлять синтез белка (как показано на рис. 1-7), любой улучшенный вид РНК, производящий более полезный белок, вынужден делиться плодами этого преимущества со всеми своими конкурентами. Но если РНК заключена в каком-либо компартменте (таком, например, как липидная мембрана), то любой производимый ею белок используется для ее собственных нужд. Таким образом, появляется возможность отбора Рис. 1 -9. Схема, демонстрирующая <a href="/info/1901865">эволюционное преимущество</a> компартментации В смешанной популяции <a href="/info/509469">самореплицирующихся молекул</a> РНК, <a href="/info/1874676">способных направлять синтез</a> белка (как показано на рис. 1-7), любой улучшенный вид РНК, производящий более полезный белок, вынужден делиться плодами этого преимущества со всеми своими конкурентами. Но если РНК заключена в каком-либо компартменте (таком, например, как <a href="/info/265814">липидная мембрана</a>), то любой производимый ею белок используется для ее <a href="/info/121664">собственных нужд</a>. <a href="/info/461013">Таким образом</a>, появляется возможность отбора
    Однако биологические молекулы не могли бы функциониро вать и жизнь в известных нам формах не существовала бы, если бы помимо сильных взаимодействий внутри биологических молекул и между ними не действовали бы невалентные, нехимические, слабые силы. Клетки п их органоиды — гетерогенные системы, существование и функционирование которых определяются межмолекулярными взаимодействиями невалентного характера. Исполнители почти всех молекулярных функций в клетках — белки — взаимодействуют с липидами и углеводами, с нуклеиновыми кислотами и с малыми молекулами. Взаимодействия эти преимущественно слабые, так как сильные взаимодействия создавали бы слишком жесткие и устойчивые структуры, лишенные молекулярной подвижности, необходимой для выполнения <5пологическими молекулами их разнообразных задач, включающих тонкую регуляцию химических реакции, компартментацию, установление градиентов концентрации. Перечислим виды сла-<5ых взаимодействий в биологических системах и охарактеризуем их. [c.55]


    Сочетание транспорта вещества с сохранением и автономностью внутреннего устройства клетки осуществляется единственным возможным способом — для выполнения своих функций клетка как целое отделена от внешней среды полупроницаемой перегородкой. Каждая клетка окружена плазматической мембраной. Появление клеточной мембраны, но-видимому, было важным этапом в возникновении жизни — компартментация, отделение внутриклеточного пространства от внешнего мира, определяла решительное ускорение добиологической и биологической эволюции (см. гл. 17). [c.332]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]

    Хотя проблема физиологических функций фенолов значительно старше, чем история изучения фенольных ингибиторов роста, но до настоящего времени не решен кардинальный вопрос — вопрос функционирования и компартментации фенольных соединений внутри клетки. Неизвестны данные о степени проницаемости, в частности, вакуолярных мембран для ряда фенольных продуктов, неясны вопросы о внутриклеточных концентрациях фенолов, регулирующих активность отдельных метаболических процессов и функцию органелл в целом. Решение этих вопросов позволит вплотную подойти к выяснению механизмов функционирования фенолов на клеточном уровне. [c.118]

    Важнейшие функции клетки (биосинтетическая и биоэнергетическая) заключаются в метаболизме и биосинтезе, в процессах запасания энергии и ее преобразования в работу. Они неразрывно связаны и могут протекать только в открытой термодинамической системе, которой и является клетка. Реализация этих функций в клетке сопряжена с трансмембранными движениями веществ, ионов и электронов как внутри клетки, так и с обменом веществами между клеткой и внеклеточной средой. Компартментация клетки мембранными структурами обеспечивает пространственно-временную организацию ее органоидов, надмолекулярных и молекулярных комплексов. Это обеспечивает строго согласованное в пространстве и во времени протекание огромного числа (вряд ли его можно выразить конкретно) биохимических и физико-химических процессов в чрезвычайно ограниченном объеме клетки. [c.41]

    Разобщение, или компартментация, в свое время отмечалась для сахаров, катехинов и ферментов, их расщепляющих (Запрометов, Курсанов, 1958 Курсанов и др., 1964). В этом случае экзогенно вводимые соединения попадают не в те метаболические центры, которые присущи целому растению, и подвергаются неестественно быстрым превращениям. [c.207]

    Процессы взаимодействия тканей, механизмы клеточного роста, индукционные эффекты фитогормонов и реп-рессорные функции ингибиторов Механизмы взаимодействия органелл, компартментация природных регуляторов, реституция организма из клетки, действие гормонов и ингибиторов на клеточном уровне [c.219]

    Количество активного ауксина в любой части растения зависит от нескольких факторов от уровня синтеза ауксина в верхушке стебля, доли транспортируемого гормона, его компартментации в клетках и, наконец, от количества ауксина, подвергшегося распаду или метаболизировавшегося другими путями. Известно, что ауксин под действием фермента ИУК-оксидазы превращается в неактивный продукт — 3-метиленоксиндол (см. рис. 9.3). Некоторые ткани в растении, особенно в корне, чрезвычайно активно разрушают ауксин этим путем. Имеют место также разные реакции конъюгации ауксина с другими молеку- [c.272]

    Ниже приведена гипотетическая схема контроля синтеза протопорфиринов, основанная на гипотезе о внутримолекулярной компартментации различных энзимов биосинтеза порфиринов внутри и вне митохондрий. [c.228]

    Мембраны, окружающие ядра эукариотических клеток, защищают связанный с ДНК тонкий механизм контроля от многих происходящих в цитоплазме химических изменений. Кроме того, они позволяют пространственно разобщить две ключевые стадии экспрессии генов 1) синтез РНК по матрице ДНК (транскрипцию ДНК) и 2) использование этих последовательностей РНК для синтеза определенных белков (трансляцию РНК). В прокариотических клетках нет такой компартментации и трансляция РНК с образованием белка происходит по мере образования РНК при транскрипции, начинаясь раньще, чем завершился синтез РНК. У эукариот, напротив (за исключением митохондрий и хлоропластов, которые в этом отнощении, как и в других, ближе к бактериям), указанные этапы пути от гена к белку строго разобщены транскрипция происходит в ядре, трансляция - в цитоплазме. РНК, прежде чем включиться в процессы синтеза белка, должна покинуть ядро. Для этого, находясь в ядре, РНК претерпевает сложный процесс созревания (процессинг), в ходе которого одни части молекулы РНК удаляются, а другие модифицируются. [c.41]


    Центральную роль в компартментации эукариотической клетки играют белки. Они катализируют реакции, протекающие в каждой органелле, и избирательно переносят малые молекулы внутрь органеллы и из нее Белки также служат специфичными для органелл поверхностными маркерами, которые направляют новые партии белков и JIипидoв к соответствующим компартментам. Клетка млекопитающих содержит около 10 миллиардов (10 ) молекул белков примерно 10000 разных типов, синтез почти всех этих белков начинается в цитозоле - общем пространстве, окружающем все органеллы. Каждый вновь синтезированный белок затем специфически доставляется в тот клеточный компартмент, который в нем нуждается. Прослеживая путь белка из одного компартмента в другой, можно разобраться в запутанном лабиринте клеточных мембран. Следовательно, нам надлежит сделать центральной темой этой главы внутриклеточные перемещения белков. Хотя здесь будут описываться и обсуждаться почти все клеточные органеллы, основное внимание будет обращено на эндоплазматический ретикулум (ЭР) и аппарат Г ольджи, которые играют решающую роль в фиксации, сортировке и транспорте множества вновь синтезированных белков. [c.5]

    Компартментация в клетках высших организмов [c.5]

    Имеющие оболочку вирусы животных, геном которых заключен в мембрану из липидного бислоя (см разд. 5.5.2), необычайно эффективно используют компартментацию клетки. Проследить жизненный цикл такого вируса - значит совершить путешествие по клетке. Хорошо изученным примером является вирус леса Семлики. геном которого представлен РНК, окруженной капсилом. состоящим из правильно построенной икосаэдрической (20-гранной) белковой оболочки. Белок оболочки называется С-белком. Нуклеокапсид (геном + капсид) окружен тесно прилегающим липидным бислоем, содержащим всего три белка (обозначаемых как Е1, Е2 и ЕЗ). Эти белки (белки оболочки) представляют собой гликопротеипы, пронизывающие липидный бислой и связывающие вместе мембрану и нуклеокапсид (рис. 8-80, А). Гликозшифроваппые части белков оболочки всегда находятся вне липидного бислоя, и комплексы этих белков образуют на поверхности вирусной частицы шипы , которые можно увидеть в электронном микроскопе (рис. 8-80. Б). [c.79]

    Как установлено недавно, при процессинге эндогенных антигенов партнеры взаимодействия могут и физически, и функционально ассоциировать друг с другом. Например, новосинтезированные комплексы из молекул МНС класса 1 и Р2-микроглобулина ассоциируют с ТАР в ЭР и диссоциируют после переноса из ЭР на цис-сто-рону комплекса Гольджи. Компартментация различных продуктов процессинга способствует, предположительно, наиболее эффективному на- [c.163]

    Окруженные мембранами клетки соединены плазмодесмами и составляют единое целое (континуум), называемое симплас-том, который отделен от апопласта (стенки и межклетники). Ионы могут перемещаться либо по симпласту, либо по апопласту как до прохождения через эндодерму, так и после. Переход ионов из одной системы в другую осуществляется путем избирательного проникновения их через мембрану. Поскольку разные растворенные вещества движутся через нее с неодинаковой скоростью и поскольку даже органеллы окружены мембранами, последние обеспечивают компартментацию биологических систем. [c.238]

    У синтетических ауксинов, используемых для регулирования роста и развития растений, способность к перемещению связана с их активностью. Как правило, синтетические соединения, эффективно стимулирующие рост, обладают также и способностью к полярному транспорту. Это означает, что некоторая часть молекулы ауксина, ответственная за его действие, отвечает и за его связывание со специфическими участками транспортного белка. Когда мы измеряем контролируемый ауксином рост стебля, мы всегда находим, что скорость роста коррелирует не с общим содержанием ауксина, а с тем его количеством, которое способно к диффузии и выделяется из стебля, если его обрезать и поместить срезом на блок агара. Это свидетельствует о том, что не весь ауксин в клетке оказывает стимулирующее влияние на рост. Вероятно, рост контролируется ауксином, содержащимся в определенной части клетки, например в цитоплазме. Именно этот ауксин и доступен для транспортировки. Однако значительное количество ауксина может быть сосредоточено в других частях клетки, таких, как вакуоль, что делает его недоступным для транспортировки И неспособным оказывать влияние нарост тем не менее если мы экстрагируем ткань растворителями и измерим в экстракте количество ауксина, то при этом будет учтен и неподвижный ауксин, что приведет к неправильной оценке действительной локализации различных форм ауксина в изучаемых клетках. Этот феномен компартментации имеет большое значение для всей физиологии часто локализация того или иного соединения или фермента важнее, чем его общее содержание. Такое правило почти наверняка применимо не только к ауксину, но и ко всем другим гормонам. [c.272]

    Онтогенетические реакции, такие как инициация цветения, прорастание семян и деэтиоляция, несомненно, связаны с радикальными сдвигами в химизме, структуре и функции растительных клеток. Эти сдвиги в свою очередь зависят от изменения активности многих ферментов, а также от синтеза новых ферментов. Так как ферменты представляют собой белки и их синтез определяется процессами трансляции и транскрипции, состояние фи- тохрома должно влиять или на ка-кой-то один из этих процессов, или на оба. Мы не знаем, как фитохром осуществляет это влияние. Он мог бы связываться с ядерным хроматином, оказывая таким образом прямое воздействие на синтез РНК и белка его влияние могло бы быть и более тонким, возможно, связанным с изменениями в компартментации ионов внутри клетки и как следствие — в ч интезе белка. Однако контроль белкового синтеза — не единственный способ действия фитохрома, так как многие регулируемые фитохромом процессы не зависят от синтеза белка и осуществляются слишком быстро. [c.352]

    Термодинамическая линейность вдали от равновесия может возникать по различным причинам, не имеющим никакого отношения к внутренней линейности, присущей самой системе. В настоящей главе мы предлагаем два возможных объяснения наблюдаемых линейных зависимостей, основанных на рассмотрении кинетических моделей, которые умышленно значительно упрощены. Это рассмотрение приводит к выводу, что возможны и действительно существуют условия, в которых можно применять неравновесную термодинамику для анализа линейного поведения в сопряженной системе. Например, исследование эпи-телиев амфибий позволяет оценить с помощью неповреждающих методов сродство окислительной реакции, приводящей в действие активный транспорт, тем самым обходя неопределенности, связанные с компартментацией ткани, стандартными свободными энергиями и коэффициентами активности. [c.89]

    Глава 2. Понятие о компартментации в живой клетке [c.19]

    Основой дифференциации метаболических процессов в клетке является компартмеитация. В протопласте существуют дифференцированные специализированные участки, различающиеся по степени активности содержащихся в иих химических метаболитов и ферментов, которые регулируют их превращения. Эти, участки, или отсеки, называются ко м п а р т м ей т а м и. Клеточные мембраны выполняют функцию расчленения биохимических процессов, разделения их между различными компонентами протопласта и пространственного размещения в объеме клетки фондов метаболитов и ферментов, т. е.. обусловливают явление компартментации. [c.89]

    Пространственное распределение и клеточная компартментация ферментов, субстратов и кофакторов (см. гл. 2) имеют кардинальное значение. Например, в клетках печени ферменты гликолиза локализованы в цитоплазме, а ферменты цикла лимонной кислоты — в митохондриях. [c.71]

    Объединение всех ферментов рассматриваемого метаболического пути в единый полиферментный комплекс обеспечивает его высокую эффективность и устраняет конкуренцию других процессов, в результате достигается эффект компартментации данного пути в клетке без участия дополнительных барьеров проницаемости. [c.234]

    Важным способом регуляции ферментативной активности являетсялщаисформация.и1ашнтнвЦ. формы фермента (зимо-гена) в активную форму. Это достигается разрушением некоторых ковалентных связей с помощью протеаз, восстанови лением дисульфидных групп, фосфорилированием протеинкина-зами за счет АТР или ассоциацией неактивных субъединиц. Потенциально активные ферменты могут не функционировать из-за их компартментации, например, в лизосомах, причем освобождению лизосомных гидролаз способствуют кислые значения pH, свободнорадикальное окисление мембранных липидов и некоторые жирорастворимые витамины и стероиды. Инактивация ферментов осуществляется путем их связывания специфическими ингибиторами белковой природы, а также разрушения протеиназами. [c.33]

    Возникающий при расщеплении малата в хлоропластах клеток обкладки пируват перемещается назад в хлоропласты клеток мезофилла (рис. 3.14), где может снова превращаться в первичный акцептор СО2 — ФЕП. Такая компартментация процессов позволяет растениям с Сд-путем осуществлять фотосинтез даже при закрытых устьицах, так как хлоропласты клеток обкладки используют малат (аспартат), образовавшийся ранее, как донор СОг. С4-растения могут также использовать СО2, возникающий при фотодыхании (см. дальше). Закрывание устьичных отверстий в наиболее жаркое время дня сокращает потери воды за счет испарения (транспирации). Не удивительно поэтому, что к С4-растениям относятся [c.95]


Смотреть страницы где упоминается термин Компартментация: [c.106]    [c.24]    [c.333]    [c.537]    [c.547]    [c.82]    [c.178]    [c.53]    [c.56]    [c.254]    [c.103]   
Биофизика (1988) -- [ c.24 , c.332 , c.493 , c.537 , c.552 , c.576 , c.578 ]

Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.282 ]

Физиология растений Изд.3 (1988) -- [ c.89 ]

Физиология растений (1989) -- [ c.15 , c.33 ]




ПОИСК







© 2024 chem21.info Реклама на сайте