Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетические элементы

    В последние годы стало очевидным, что изменчивость как эу-, так и прокариотических организмов связана не только с точечными мутациями, хромосомными перестройками или описанными рекомбинационными событиями, но и с подвижными, или мобильными, генетическими элементами — сравнительно автономными сегментами ДНК, способными встраиваться в геном клетки-хозяина и вырезаться из него. К мобильным элементам можно отнести и некоторые вирусы — в этом случае возможно перемещение не только в пределах генетического материала одной клетки, но и между клетками (см. гл. ХП1). У бактерий перенос генетической инфор.мации между клетками могут осуществлять не только вирусы, но и плазмиды многие из которых могут встраиваться в различные участки генома клетки-хозяина и поэтому тоже могут быть отнесены к мобильным эле.ментам. Плазмиды и мобильные генетические элементы играют существенную роль в эволюции бактерий. [c.110]


    Г-н. стала основой развития молекулярной генетики. Благодаря возможности клонирования чужеродных генов в бактериях, животных и растит, клетках (выделеньг клоны мн. генов рибосомной РНК, гистонов, интерферона и гормонов человека и животных и т. п.), Г. и. имеет прикладное значение. Она составляет, наряду с клеточной инженерией, основу совр. биотехнологии. С помощью методов Г. и. получены мн. иовые, иногда неожиданные данные, открыто, напр., мозаичное строение генов у высших организмов, изучены транспозоны бактерий и мобильные диспергированные элементы высших организмов, открыты онкогены и т.п. (см. Мигрирующие генетические элементы). [c.518]

    ПЛАЗМИДЫ И МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ БАКТЕРИЙ [c.110]

    Глава V. Плазмиды и мобильные генетические элементы бактерий 110 [c.351]

    Подобные парадоксы. можно разрешить, вспо.мнив, что и плазмиды и мобильные генетические элементы обладают сравнительной автономией от основной массы генетического материала, и поэто.му их можно рассматривать как своего рода организмы, обитающие в особой, генетической, среде. Таким образом, можно рассматривать функции плазмид, IS-элементов и транспозонов не с точки зрения преимуществ, которые они несут бактериям-хозяевам, а с точки зрения их самоподдержания в бактериальных популяциях, другими словами, можно считать автономные элементы прокариот эгоистической ДНК, обеспечивающей в первую очередь собственное размножение. В этом смысле. мобильные элементы и плазмиды непосредственно примыкают к вирусам, эгоистические тенденции которых очевидны. [c.122]

    Глава XI. Подвижные генетические элементы генома эукариот 221 [c.353]

    Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]


    Линкерные фрагменты не только обеспечивают объединение генов, но и обусловливают их экспрессию, в связи с чем часто в середину линкера помещают какой-либо регуляторный генетический элемент, например промотор, или участок связывания с рибосомой. [c.117]

    Плазмида (Plasmid) Внехромосомный генетический элемент, способный к длительному автономному существованию и репликации. Обычно это двухцепочечная кольцевая ДНК длиной 1-200 т.п.н. [c.556]

    ПОДВИЖНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ ГЕНОМА ЭУКАРИОТ [c.221]

    МИГРИРУЮЩИЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ, [c.341]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    Подвижные генетические элементы имеют сигнальное и регуляторное значение, они служат усилителями и промоторами РНК-полимераз, участвуют в процессинге и т. д. Георгиев изучил так называемые транспозиционные взрывы — явления одно- [c.298]

    Набор генетических элементов, обеспечивающих образование множества разных Н-цепей антител человека, включает около 95 Уд-доменов, 30 Dj -доменов, 6 Т -доменов и 5 основных константных (Са, Су, С5, Се, Сц) доменов. Локус к-генов содержит примерно 76 Ук-доменов, 5 jK-доменов и один константный (Ск) участок (рис. 19.9). Размер Н-локусов и к-генов - от 1 до [c.429]

    Открытие основных компонентов систем транскрипции и трансляции послужило важным стимулом в изучении механизмов регуляции этих процессов. В 1961 г. Ф. Жакоб и Ж. Моно опубликовали схему регуляции синтеза белков на уровне транскрипции при помощи регуляторных белков, а в 1966 г. У. Гилберт и Б, Мюллер-Хилл впервые выделили такой белок. Кроме того, оказалось, что РНК-полимераза сама является регулятором генной активности (Р. Б. Хесин. 1962—1966). Эти работы привели к открытию основных регуляторных генетических элементов — промоторов и терминаторов транскрипции. [c.7]

    Рекомбинационные процессы играют также ведущую роль в эволюции строения геномов в целом. Дело в том, что перестройки генетического материала часто можно объяснить рекомбинацией между гомологичными последовательностя.ми, оказавшимися в негомологичном положении (роль таких последовательностей могут выполнять, например, мобильные генетические элементы см. гл. V). На рис. 81 (см. с. 126) показан один важный частный случай ошибочной рекомбинации — неравный кроссинговер. В результате этого процесса генетический материал одной из гомологичных хромосо.м делегирует, но в другой хро.мосо.ме возникает дупликация. Считается, что такие дупликации играют важную роль в возникновении родственных, но различных генов, поскольку присутствие в геноме лишних копий какого-либо гена позволяет им сравнительно свободно из.ме-няться, что, в принципе, может привести к возникновению новых функций белка — продукта гена. По всей вероятности, это один из путей возникновения мультигенных семейств, характерных для геномов высших эукариот и кодирующих белки со сходными, но различными функциями. [c.109]

    Степень индукции SOS-системы в определенном смысле отражают благополучие клетки и ее шансы на выживание. Поэтому некоторые относительно автономные внутриклеточные генетические элементы, например умеренные бактериофаги, используют индукцию SOS-системы в качестве сигнала для размножения и уничтожения клетки-хозяина безвредный до того участок хромосомы (профаг, см. гл. ХП1), почувствовав слабость хозяина, начинает размножаться и уничтожает его, чтобы спастись самому. Для фага лямбда показано, что чувствительность к состоянию индукции SOS-системы объясняется тем, что репрессор фага устроен аналогично белку LexA и самораскусывается , связавшись с активированным КесА-белком. [c.81]

    Вторую батьшую разнородную группу составляют подвижные (мобильные) генетические элементы разной природы. На нх датю приходится значительная часть генома — 10—20 о. В отличие от генов первой группы, осуществляющих общеклеточные функции, отдельные семейства которых сгруппированы в одном или нескольких районах эукариотического генома, подвижные элементы рассея-иы по геному, перемежаясь с уникальными последовательностями ДНК (см. гл, XI). [c.190]

    К этой группе относятся 1) компьютерная система для функциональной диагностики генетических текстов, разработанная В.В. Соловьевым, А.К. Сб1ЛИховой и И.Б. Рогозиным 2) компьютерная система для исследования молекулярных механизмов мутационного и рекомбинационного процесса, разработанная И.Б. Рогозиным и соавторами 3) компьютерная система, разработанная В.В. Соловьевым, А.К. Салиховой и A.A. Саламовым для исследования вторичной и третичной структуры белков 4) описанная в работе В.В. Капитонова компьютерная система для исследования свойств мобильных генетических элементов и ряд других. [c.7]


    Эффективный метод исследования основан на существовании в бактериях небольших генетических элементов, существующих вне хромосомы. Об одной группе таких элементов (или факторов), получившей название F-факторов, уже шла речь выше (разд. А, 1,г). Эти элементы, представляющие собой небольшие кольцевые молекулы ДНК, являются иредсЕавитеЛями 1 руш1ыд включающей большое число подобны х аген- [c.256]

    Бактериальный Г. содержит в осн. неповторяющиеся гены лишь немногие гены, напр, кодирующие рибосо-мальные РНК, присутствуют в бактериальном Г. в виде неск. копий. В Г. высших организмов по степени повторяемости выделяют три осн. типа нуклеотидных последовательностей высокоповторяющиеся (до 10 копий), умеренно повторяющиеся (10 -10 копий) и уникальные. Последние м.б. представлены одной или неск. копиями. В эту фракцию входит подавляющее число генов, кодирующих белки. Повторяющиеся последовательности обычно составляют в зависимости от вида организма 10-70% всего Г. Их, как правило, меньше у низкоорганизованных организмов и больше у высших. Выяснены ф-ции лишь очень малой части всех повторов. Особую фракцию Г. составляют мигрирующие генетические элементы. [c.519]

    Значит, роль в спонтанной М, играют специфич. мигрирующие генетические элементы. Частота М. с их участием составлвет у простейших организмов (бактерий, дрожжей) ок. 10 на поколение, а при определенных условиях может эиачитбльио уве.гшчнваться. В результате встраивания подобных элементов в гены может нарушаться их активиость, изменяться шстема регуляции и т.п. [c.155]

    Нек-рые П., наз. эписомами, обладают способностью существовать в двух состояниях-автономном и интегрированном. В автономном состоянии эписома не является частью бактериальной хромосомы и реплицируется (само-воспроизводится) независимо, хотя и синхронно с ней. В интегрир. состоянии она реплицируется в составе хромосомы. Способность обратимо включаться в состав хромосомы часто сопряжена с наличие.м в эписомах мигрирующих генетических элементов. [c.552]

    По-видимому, это был первый случай в истории, когда о начале великой технологической революции возвестил биржевой колокол. В 1980 г., когда фирма Genente h впервые предложила обществу свои акции, это была небольшая компания в Калифорнии, в течение четырех лет успешно работавшая над проблемой получения рекомбинантных ДНК. За два года до этого ученым компании удалось выделить фрагменты гена (последовательности ДНК), кодирующие человеческий инсулин, и перенести их в генетические элементы (клонирующие векторы), способные реплицироваться в клетках обычной кишечной палочки Es heri hia oli). Эти бактериальные клетки работали как биологические фабрики по производству человеческого инсулина, который после соответствующей очистки мог использоваться как лекарственный препарат для больных диабетом, дающих аллергическую реакцию на свиной инсулин. Еще десять лет назад такое развитие событий представ- [c.15]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]

    Как автономно реплицирующиеся генетические элементы плазмиды обладают всеми основными свойствами, которые позволяют использовать их в качестве вектора для переноса клонируемой ДНК. Но довольно часто природные (немодифицированные, несконструирован-ные) плазмиды бывают лишены некоторых обязательных для высококачественного вектора свойств. К таким важным свойствам относятся  [c.57]


Смотреть страницы где упоминается термин Генетические элементы: [c.7]    [c.110]    [c.230]    [c.623]    [c.577]    [c.651]    [c.665]    [c.104]    [c.21]    [c.553]   
Смотреть главы в:

Современная генетика Т.1 -> Генетические элементы




ПОИСК







© 2025 chem21.info Реклама на сайте