Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нативная конформация

    Денатурация. Утрата белком природной (нативной) конформации, обычно сопровождающаяся потерей его биологической функции, например ферментативной активности. Денатурация может быть либо обратимым, либо необратимым процессом. Примером последнего служит коагуляция яичного белка (альбумина) при нагревании яйца. [c.413]

    Скорость ферментативной реакции зависит от концентрации субстрата (субстратов), pH, температуры, присутствия активаторов или ингибиторов, природы буфера, его ионной силы и др. Ряд факторов оказывает влияние на стабильность фермента, вызывая необратимые-изменения его нативной конформации. Это необходимо учитывать, подбирая условия измерения активности (pH, температура, время инкубации). Подробное исследование стабильности ферментов описано, ниже. [c.206]


    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]

    Сигнальный пептид, состоящий обычно из 15 — 20 гидрофобных аминокислот, вступает через рибосомный рецепторный белок во взаимодействие с эндоплазматическим ретикулумом и начинает локально-специфический синтез белка. Еще до заверщения синтеза он отщепляется сигнальной пептидазой от остальной цепи. Полипептидная цепь секреторного белка выводится через систему каналов эндоплазматического ретикулума и вслед за этим сворачивается в нативную конформацию. [c.396]

    Обычно предполагают, что специфическое свертывание полипептидной цепи начинается еще во время ее синтеза на рибосоме. Растущая цепь свертывается случайным образом и в конце концов принимает наиболее устойчивую конформацию. По окончании синтеза пептидной цепи молекула самопроизвольно складывается в нативную конформацию. Однако специфическую биологическую активность белок чаще всего приобретает лишь после его модификации другими ферментами, что иногда приводит к дальнейшему изменению конформации. [c.106]

    Среди других видов каталитических реакций ферментативный катализ является самым высокоорганизованным, поскольку ферменты отличаются высокой избирательностью, специфичностью и каталитической активностью. Ферменты—это высокомолекулярные белки, состоящие из различных аминокислот, связанных пептидными связями. Нативная конформация молекулы фермента образует активный каталитический центр, содержащий полярные [c.183]


    Изучение структурной самоорганизации позволило сформулировать фундаментальное положение о том, что конформация белковой молекулы отвечает термодинамически равновесному состоянию и, как таковое, не зависит от конкретных внешних условий свертывания белковой цепи (in vivo, in vitro или с помощью шаперонов) и от ее предыстории, т.е. способа получения (биосинтез или химический синтез). Конечная пространственная структура определяется исключительно составом и порядком расположения аминокислот в последовательности. Было доказано, что все необходимые сведения о физиологически активной форме белка заключены в его химическом строении. Трансляция линейной информации в трехмерную структуру возможна, однако только при вполне определенных физиологических условиях (температура, давление, pH, ионная сила, присутствие простетических групп, ионов металла). При их соблюдении сборка осуществляется спонтанно в том смысле, что принятие белком своей равновесной нативной конформации не требует специального [c.81]

    Настоящий том, третий из намеченных монографий по проблеме белка, посвящен вопросам взаимосвязи между аминокислотной последовательностью, с одной стороны, и пространственным строением, динамическими конформационными свойствами и механизмом процесса свертывания беспорядочно флуктуирующей белковой цепи в нативную конформацию, с другой, т.е. - теоретическим аспектам структурной самоорганизации белка. Он является продолжением первых двух томов издания в которых были рассмотрены экспериментальные и концептуальные исследования химического и пространственного строения белковых молекул с момента возникновения работ в этих областях и по сегодняшний день. Автор подробно анализирует существующие представления о природе взаимоотношений между первичной и пространственной структурой белков, уделяя, естественно, особое внимание развиваемой им теории. [c.5]

    Имеющиеся экспериментальные данные свидетельствуют о том, что трехмерные структуры белков характеризуются плотнейшей упаковкой атомов. Коэффициенты упаковки белковых молекул в нативном состоянии имеют значения от 68 до 82%. Для сравнения напомним, что у правильных сферических тел этот коэффициент равен 74%, а у молекул воды и циклогексана - 58 и 44% соответственно. По плотности упаковки атомов белковые молекулы близки кристаллам малых органических молекул (70-78%). Нативные структуры белков имеют также незначительные коэффициенты сжимаемости, близкие, например, коэффициентам сжимаемости олова и каменной соли. Высокая компактность глобулярных белков подтверждается большой плотностью, малой вязкостью и малыми молекулярными объемами нативных белков в растворе. Так, наблюдаемые у них величины плотности (1,3-1,5 г/см ) выше, чем у сухих белков и близки величинам плотности кристаллов низкомолекулярных органических соединений. Это свойство пространственных структур белковых молекул безупречно с физической точки зрения и очень образно передает определение их как "апериодические кристаллы" - термин, использованный Э. Шре-дингером для характеристики состояния хромосом [52]. Таким образом, есть все основания заключить, что нативная конформация белка представляет собой плотно упакованную структуру с максимальным числом внутримолекулярных контактов между валентно-несвязанными атомами. [c.102]

    В физической теории нативная конформация белка представляет собой плотно упакованную структуру. При ее формировании внутримолекулярные взаимодействия валентно-несвязанных атомов оказываются превалирующими над межмолекулярными. Далее предполагается, что в нативной [c.7]

    Третье направление исследований механизма свертывания белковой цепи в нативную конформацию строится на предположении о наличии особого стереохимического кода (второго генетического кода). [c.8]

    В основе всех поисков предсказательных алгоритмов лежит конформационная концепция Полинга, согласно которой трехмерная структура белка представляет собой ансамбль регулярных вторичных структур. Позднее, развивая идею Полинга и Кори о взаимодействии вторичных структур, в конформационный ансамбль были включены супервторичные структуры. Единство всех исследований по отношению к этой концепции неизбежно, поскольку в противном случае очевидна бесперспективность поиска эмпирических корреляций и предсказательных алгоритмов, базирующихся на статистической обработке известных кристаллографических данных. Если основу пространственного строения сложных белковых макромолекул образуют не только отдельные немногочисленные стандартные блоки, но и практически неограниченное количество разнообразных нерегулярных структурных сегментов, то, очевидно, нельзя рассчитывать на его описание с помощью простых правил, выведенных путем статистической обработки всегда ограниченного экспериментального материала. Результаты рентгеноструктурного анализа свидетельствуют о том, что общее содержание вторичных форм полипептидной цепи в белках сравнительно невелико, во всяком случае его доверительное значение не превышает 50%. Реализующиеся в нативных конформациях белковых молекул а-спирали и р-структуры в действительности не являются, более того, у гетерогенных аминокислотных последовательностей никогда не могут являться, строго регулярными (отклонения соответствующих двугранных углов (ф, (/) от их значений в гомогенной цепи составляют, как правило, десятки градусов, а иногда достигают 100-120°). Анализ также показал, что все стандартные аминокислотные остатки (за исключением Pro) имеют практически одинаковые возможности для встраивания в а-спираль, р-структуру и неупорядоченные участки. Выбор определяется не индивидуальными свойствами остатков, а их комбинацией в последовательности. [c.78]


    При эмпирическом подходе и обсуждении пространственного строения белковых молекул речь всегда идет лишь о конфигурации полипептидной цепи при полном игнорировании конформационных возможностей боковых цепей аминокислотных остатков. Между тем, именно взаимодействия боковых цепей, в которые входят около двух третей атомов молекулы белка, ответственны в наибольшей степени за стабилизацию и уникальные физические и биохимические свойства нативной конформации природной гетерогенной аминокислотной последовательности. В силу этого обстоятельства на локальных участках белковой цепи в зависимости от аминокислотного порядка возможна реализация самых разнообразных структур, причем, главным образом, нерегулярных. Представление о том, что у гетерогенной последовательности наиболее компактными, энергетически предпочтительными во всех случаях оказываются только структуры с регулярной основной цепью, не подкрепляется физическими соображениями общего характера, противоречит экспериментальным данным и результатам теоретического анализа. У белков с нерегулярным расположением вдоль цепи боковых радикалов пространственные структуры с регулярными формами основной цепи, очевидно, не могут во всех случаях обеспечить максимальное число эффективных внутримолекулярных контактов, а поэтому не могут быть всегда самыми стабильными. [c.80]

    Итак, можно констатировать, что у всех исследований, направленных на разработку эмпирических предсказательных алгоритмов трехмерных структур белка, неадекватными изучаемому явлению оказываются и положенные в их основу спиральная концепция Полинга-Кори, и гидрофобная концепция Козмана об организации нативной конформации, и используемые методы, и выбранная стратегия решения задачи. Такой путь следует считать бесперспективным, так как он в принципе, а не из-за сложности проблемы или недостатка экспериментального материала, не может привести к конечной цели - априорному количественному описанию геометрии и конформационных возможностей остатков в белковой глобуле. Не может играть он и вспомогательную роль, например, в получении промежуточных данных о структуре или ее отдельных частей, которые были бы полезны в последующем уточнении. Бесперспективность эмпирического подхода подтверждают результаты всех предпринятых за последние три десятилетия попыток следовать ему. [c.81]

    Свертывание белковой цепи. Для познания принципов структурной организации белковых молекул чрезвычайный интерес представляет явление денатурации (ренатурации). Переход нативной конформации белка в развернутую неструктурированную форму и обратный переход флуктуирующего статистического клубка в исходную компактную трехмерную структуру есть не что иное, как процессы разрушения и формирования именно тех самых связей, которые и обусловливают структурную организацию белковой молекулы. Анализ работ, посвященных экспериментальным и теоретическим исследованиям денатурации белков, был начат в предшествующем томе [2. Ч. III]. Перед тем как продолжить эту тему, кратко напомним основные итоги уже проведенного обсуждения. [c.81]

    Каковы побудительные мотивы самопроизвольно протекающего процесса сборки природной аминокислотной последовательности в нативную конформацию или, иными словами, какие силы управляют процессом  [c.82]

    Почему столь мала продолжительность сборки нативной конформации белка, осуществляемой по беспорядочно-поисковому механизму, казалось бы неизбежно связанному с перебором практически бесконечного массива конформационных флуктуаций  [c.82]

    Предложенные модельные описания механизма свертывания белка неполны, непоследовательны и противоречивы. Они, по существу, не отвечают ни на один из принципиальных вопросов, возникающих при изучении уникального в природе молекулярного явления самопроизвольного зарождения и развития порядка из хаоса. Для приближения конечных результатов теоретического рассмотрения процессов сборки к наблюдаемым экспериментальным данным в расчеты привносятся (без объяснения причин и механизма возникновения) никак не следующие из статистической физики и равновесной термодинамики представления об эмбрионах, ядрах и нуклеациях или вводятся известные из опыта структурные элементы нативных конформаций белков, как правило, (Х-спирали и р-складчатые листы. [c.83]

    Согласно бифуркационной теории механизмы свертывания белковой цепи в процессе ренатурации и по ходу рибосомного синтеза не должны иметь принципиальных отличий. Главное, что в обоих случаях структурная самоорганизация проходит через одну и ту же последовательность бифуркационных флуктуаций, ведущих к идентичным нативным конформациям. Различия, безусловно, есть, но они несущественны, поскольку не ставят под сомнение утверждение, что аминокислотная последовательность однозначно определяет трехмерную структуру белковой молекулы. Механизмы сборки в обоих случаях едины по своей природе и случайно- [c.104]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]

    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]

    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]

    А, а величина ребра многогранника, следовательно, равна 14А. Для проверки правильности такого заданий длины ребра многогранника построена зависимость среднеквадратичного отклонения расположения о-спиралей от нативной конформации при различных, длинах ребер многогранника (рис. 61. Можнд видеть, что размер ребра" 4-15 А соответствует отклонению 5 А.(что является хорошим начальным приближением для дальнеймего расчета структуры белка). Построенная таким образом структура не удовлетворяет отерическим ван-дер-ваальсовским ограничениям и поэтому должка подвергаться дальнеймей оптимизации. [c.146]

    Исключительное значение имеет К. а. в биохимии и биофизике. Хим. и биол. св-ва биополимеров (белков, углеводов, нуклеиновых к-т и т. д.) в большой степени зависят от их конформац. св-в. Так, при сильном изменении нативной конформации белков (денатурашш) они полностью теряют свою биол. активность. Конформац. изменения являются обязательной составной частью практически всех биохим. процессов. Напр., в ферментативных р-циях опознавание субстрата ферментом, характер взаимод. и структура образующихся продуктов определяются пространств, строением и возможностями взаимной подстройки (в т. ч. конформационной) участвующих молекул. Часто связывание фермента с субстратом вызывает в последнем такие конформац. изменения, к-рые и делают возможным его дальнейшее строго регио- и стереоспецифичное реагирование. [c.461]

    Гистограмма количества разрешенных конформаций домека I папаина для каждого среднеквадратичного отклонения от нативной конформации. Всего 2748 отерически разрешенных конформаций. [c.150]

    Растворимая глицеральдегид-З-фосфатдегидрогеназа из дрожжей при инкубации на холоде в присутствии АТФ и хлористого натрия диссоциирует на димеры и теряет свою активность. Диссоциация тетрамера иммобилизованной глицеральдегид-З-фосфатдегидрогеназы позволяет получить связанные с матрицей димеры и исследовать их свойства. Стабилизирующее действие носителя приводит к получению димеров, сохранивших нативную конформацию. [c.301]

    Интерпретация карт электронной плотности молекулы значительно облегчается при знании аминокислотной последовательности. Однако далеко не каждый Б. удается получить в кристаллич. состоянии. Необходимое условие кристаллизации-сохранение нативной конформации, к-рая часто реализуется лишь в условиях, приближенных к физиологическим. В частности. Б., входящие в состав нуклео-протеидных комплексов (рибосома, вирусы хорошо кристаллизуются только в составе таких комплексоа С помощью обычного рентгеновского излучения проводить анализ таких гигантских образований сложно. В этих случаях используют синхротронное рентгеновское излучение, интенсивность к-рого может быть на два порядка выше. Вследствие этого резко сокращается время эксперимента по регистрации дифракц. отражений, а также снижается кол-во исследуемого в-ва. Ряд мембранных Б. кристаллизуется в условиях нативного липидного окружения с образованием т. наз. двухмерных кристаллов, представляющих из себя регулярно упакованные молекулы Б. в бислойной липидной мембране. При изучении двухмерных кристаллов используют электронную микроскопию и электронографию. [c.252]

    Г. в. между неполярными атомными группами (углеводородными, гало гену глеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние иа их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами ( маслами , гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водиых пленок между неполярными фазами, коагуляция и структуро-образование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.). [c.568]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    Денатурация — любые вызванные физическими и химическими воздействиями изменения, которые при сохранении первичной структуры белка сопровождаются большей или меньшей потерей его биологической активности и других индивидуальных свойств белка. При денатурации ослабляются гидрофобные взаимодействия, разрываются водородные связи, а в присутствии восстановителей и дисульфидные связи. Денатурация с разрывом невалентных связей обычно обратима. Путем образования новых невалентных связей, а также благодаря взаимодействию с денатурирующим веществом новая конформация стабилизируется. Возникающее метастабильное состояние при восстановлении физиологических условий может вернуться к нативной конформации ренатурация). Принципиально возможна ренатура-ция и при восстановительном расщеплении дисульфидных связей (рис. 3-8). [c.358]

    По данным Рихардса [219], рибонуклеаза А при обработке бактериальной протеазой субтилизином расщепляется между остатками А1а-20 и Ser-21 на так называемый S-nenmud (1 — 20) и S-белок с последовательностью 21 — 124, содержащей 4 дисульфидных мостика. Оба компонента после разделения показывают ничтожную биологическую активность. Однако, если смешать их один с другим, биологическая активность восстановливает-ся, т. е. S-пептид и S-белок с помощью невалентных связей собираются в так называемую рибонуклеазу 5, обладающую пространственной структурой, близкой к нативной конформации. [c.403]

    Решающую роль в создании количественного метода сыграли положения о гармонии всех внутриостаточных и межостаточных взаимодействий и их преобладающем энергетическом влиянии над взаимодействиями белковой цепи с молекулами и ионами окружающей среды. Одно из этих положений позволило разделить проблему структурной организации белка на три менее громоздкие и поддающиеся последовательному решению частные проблемы ближних, средних и дальних взаимодействий. В результате специально разработанной классификации пептидных структур на конформации, формы и шейпы стало возможным получение достоверных количественных данных о конфор-мационных состояниях целых наборов структурных вариантов различных таксономических групп, ограничившись детальным анализом их отдельных представителей. Классификация настолько сократила объем вычислительных работ, что сделала реальным расчет трехмерных структур бе лков, на первых порах низкомолекулярных. Изложенные в книге результаты априорных расчетов структур трипсинового ингибитора, сложного фрагмента нейротоксина II и большого числа олигопептидов, состоящих из десятков аминокислотных остатков, свидетельствуют об адекватном отражении предложенными теориями (бифуркационной и физической) структурной самоорганизации белков и пептидов и реальности предсказания их нативных конформаций. [c.8]

    Во всех предложенных равновесных термодинамических моделях важнейшей характеристикой упорядоченного состояния белка считается глобулярность его нативной конформации с внутренним гидрофобным ядром и внешней гидрофильной оболочкой. Такое укоренившееся представление имеет, как уже отмечалось, мало общего с действительными трехмерными структурами белков в отношении как пространственной формы, так и характера распределения в глобуле аминокислотных остатков, в значительной мере искусственно подразделяемых на полярные и неполярные. Чтобы избежать рассмотрения неподдающихся учету при данном подходе гетерогенности белковой цепи и неравномерности упаковки аминокислотных остатков в нативной конформации, глобула предполагается структурно гомогенной, что не отвечает реальной ситуации. [c.83]

    Метод конформационного анализа белка, базирующийся на отмеченных выше теориях и позволяющий рассчитывать по известной аминокислотной последовательности координаты атомов нативной конформации, ее возможные конформационные перестройки и механизм образования в условиях in vivo и in vitro [38, 41]. [c.90]

    Описанная модель структурной самоорганизации белка непосредственно отвечает ренатурационному процессу, протекающему в условиях in vitro, когда исходное конформационное состояние молекулы максимально неупорядоченно. Сборка белка в процессе биосинтеза и при содействии шаперонов протекает в принципе по тому же беспорядочно-поисковому механизму и поэтому не требует разработки специальных моделей. Возможность свертывания аминокислотной последовательности до окончания синтеза и отхода от рибосомы в первом случае, и взаимодействие флуктуирующей цепи со специфическими белками во втором ограничивают конформационную свободу неструктурированного белка. В результате уменьшается количество обратимых, непродуктивных флуктуаций, увеличивается вероятность появления бифуркаций и, следовательно, сокращается время сборки. Иными словами, запрещая целый ряд обратимых флуктуаций, шапероны сближают друг с другом бифуркационные точки и тем самым делают процесс самоорганизации нативной конформации белка более эффективным. [c.99]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Рассматриваемая здесь задача является качественно иной, имеющей смысл только для избранных, главным образом, природных аминокислотных последовательностей. Поэтому ее решение может быть вьпюлнено лишь на основе самостоятельной теории, учитывающей выработанную эволюцией конформационную специфику белков, а именно статистикодетерминистический механизм структурной самоорганизации и детерминистическую (в отношении как статических, так и динамических свойств) природу нативных конформаций белковых молекул. Стремление описать сборку белка с чисто статистических позиций, не учитывающих гетерогенности цепи и взаимообусловленности поведения макроскопической системы от внутреннего строения микроскопических составляющих, объясняется иллюзорным представлением о том, что в этом случае можно идти по уже проторенному для синтетических полимеров пути и тем самым избежать разработки несравненно более сложного статистико-детерминистического подхода. Однако традиционный поиск решения не отвечает самой сущности рассматриваемого явления, и, следовательно, все попытки дать чисто статистическую трактовку структурной самоорганизации белка следует признать, как отмечалось, обреченными на неудачу (см. разд. 1.3). [c.101]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Основные положения физической теории. Ни одному из известных опытных фактов не противоречит сформулированное Р. Ламри и Г. Эй-Рингом в 1954 г. положение о том, что нативная конформация белковой Молекулы отвечает термодинамически равновесному состоянию [51]. Это достояние обладает минимальной свободной энергией Гиббса, т.е. являет- [c.101]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    Основой количественного метода конформационного анализа служат бифуркационная теория самосборки и физическая теория структурной Организации пептидов и белков (см. гл.2) Бифуркационная теория Исходит из представления о самопроизвольном свертывании белковой цепи Как о нелинейном неравновесном процессе, обусловленном и направляемом еобратимыми флуктуациями. Согласно физической теории нативная конформация белка считается плотно упакованной структурой, обладающей Минимальной внутренней энергией и согласованной в отношении всех 1утриостаточных и межостаточных взаимодействий валентно-несвязан- [c.219]

    Все варианты с углом %] —60° у первого остатка и Х -180° у последнего имеют заведомо большую энергию, поскольку боковые цепи при этих значениях ориентированы в противоположные стороны и не в состоянии эффективно взаимодействовать ни между собой, ни с промежуточными остатками. Можно также не рассматривать варианты с R-формой у предшествующего пролину остатка (если он не Gly) и варианты с дипептидным фрагментом в (L-L)-фopмe (если хотя бы один остаток не Gly). Такие конформационные состояния имеют сравнительно высокую энергию и в белках не реализуются. Кроме Gly, ни один из стандартных остатков почти не встречается в нативных конформациях белков в состояниях с Н-формой основной цепи. Все это полезно иметь в виду при вьшолнении конкретных расчетов. [c.222]


Смотреть страницы где упоминается термин Нативная конформация: [c.145]    [c.403]    [c.75]    [c.77]    [c.102]    [c.106]    [c.108]    [c.110]    [c.226]   
Основы биохимии Т 1,2,3 (1985) -- [ c.167 ]




ПОИСК







© 2025 chem21.info Реклама на сайте