Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая стойкость ненапряженных резин

    Опыт и теоретическое рассмотрение показывают, что действие напряжения накладывает свою специфику на разрушение материалов под влиянием других факторов и часто приводит к качественно иным закономерностям. Если говорить о наиболее разрушающем виде напряжений — растягивающих напряжениях, — то скорость разрушения напряженного материала под влиянием агрессивных воздействий обычно определяется скоростью химического взаимодействия, а ненапряженного — скоростью диффузии. Это обусловливает различные температурные зависимости и разный порядок расположения резин в напряженном и ненапряженном состоянии по их стойкости в агрессивных средах. В связи с этим необходимо оценивать стойкость резин к агрессивным воздействиям не только в ненапряженном состоянии, но и при одновременном действии напряжения. Так как результативное воздействие определяется соотношением интенсивностей химического и механического факторов, спецификой таких испытаний должны быть испытания при нескольких соотношениях этих факторов. Это достигается либо испытаниями при разных концентрациях агрессивной среды (например, при испытаниях на озонное и свето-озонное старение) либо испытаниями при разных напряжениях (испытания в кислотах). В наиболее сложных случаях рекомендуется изменять и то и другое. Зависимости показателя скорости разрушения — времени до разрыва (тр) — как от концентрации с агрессивной среды, так и от напряжения носят сложный характер [1]. При малых концентрациях среда практически не влияет на Тр (происходит статическая усталость материала), а при больших — наблюдается степени а я з а висимость Тр= [c.169]


    Антикоррозионные резины и другие химически стойкие каучуковые композиции более всего используются для защиты емкостной химической аппаратуры, в которой резиновая обкладка находится в ненапряженном состоянии. Проверку стойкости таких резин производят по ГОСТ 9.030—74 Единая система [c.12]

    По назначению химически стойкие материалы можно подразделить на два типа резины и эбониты — для гуммирования аппаратуры, резины —для уплотнительных материалов. Резины, предназначенные для гуммирования, наряду с химической стойкостью должны обладать хорошими технологическими свойствами при каландровании, удовлетворительно крепиться к металлу в процессе вулканизации, иметь незначительную усадку, так как напряжения, являющиеся следствием высоких усадок при вулканизации, приведут к,разрушению обкладок. Резины для прокладочных и уплотнительных материалов,, кроме химической стойкости, должны обладать высокой эластичностью, теплостойкостью, механической прочностью и т. д. Обкладочные и уплотнительные резины могут подвергаться износу под воздействием гидроабразивной пульпы, флотационных агентов, трения по уплотняемой поверхности и т. д. До настоящего времени выбор и характеристика резин производятся только для условий их работы в ненапряженном состоянии характеристика резин по сопротивляемости износу в агрессивных средах пока не производится. [c.173]

    При выборе химически стойких резин для антикоррозионных покрытий исходят из ГОСТ 9.071—76 Единая система защиты от коррозии и старения. Резины для изделий, работающих в жидких агрессивных средах. Технические требования . Срок действия ГОСТ до 01.01.1985 г. По стойкости к воздействию сред в ненапряженном состоянии резины подразделяются на 4 группы. Первая группа, характеризующая самые стойкие резины, определяется следующими нормами стойкости коэффициент изменения физико-механических показателей после испытаний К от 0,85 до 1,15, набухание до 5,0% (масс.), вымывание (т. е. потеря массы) до 1,0% (масс.). Последняя группа, объединяющая наименее стойкие резины, имеет К менее 0,50—0,20, а также свыше 1,50—1,70, набухание более 15,0—50,0% (масс.) или вымывание более 3,0—10,0% (масс.). [c.12]

    С, а до этого наблюдается лишь небольшое увеличение скорости износа. В то же время износ химически стойкой резины Б, уменьшаясь с ростом температуры, достигает минимальной величины при 70 С п лишь затем несколько возрастает. Скорость износа исключительно стойкой к действию минеральных кислот резины Ф уменьшается до температуры 90° С (рис. VII.12). Аналогичная картина наблюдается и в других средах. Определение химической стойкости резин по снижению их прочности после выдержки в агрессивных средах в ненапряженном состоянии при разных температурах позволяет заключить, что скорость износа различных резин при повышении температуры пульпы уменьшаеся ввиду роста эластичности до тех пор, пока резина является достаточно стойкой к воздействию среды. [c.187]


    Наиболее характерными примерами сильного влияния напряжения на поведение эластомеров являются катастрофиче-С7<ое разрушение растянутых резин из ненасыщенных каучуков под действием следов озона при практически неизменных их свойствах в результате контакта с ним ненапряженных резин [5, 7] и резкий сдвиг температуры хрупкости резин в сторону уменьшения при растяжении и некоторое ее повышение при сжатии по сравнению с недеформированными образцами. Отсюда очевидно, что характер напряжения также играет существенную роль. По действию агрессивных жидкостей на механические свойства предложена различная классификация резин по их стойкости при растяжении, сжатии, многократных деформациях, трении по гладкой поверхности [9]. Изменение механических свойств, однако, является конечным результатом влияния напряжений на направление химических реакций, в том числе иа соотношение процессов деструкции и структурирования,-на диффузию ингредиентов [10], что проявляется, например, в различной скорости старения разных участков резин, находящихся в сложно-напряженном состоянии [И], на разрушение и образование физических структур, в частности на развитие процессов кристаллизации [12]. [c.9]


Стойкость эластомеров в эксплуатационных условиях (1986) -- [ c.117 , c.118 ]




ПОИСК







© 2025 chem21.info Реклама на сайте