Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экзоны

    Методы матекулярного клонирования открыли новую эру в исследовании эукариотических генов и выявили особенности их строения, которые ранее никто не мог предсказать. Общая схема строения эукариотического гена, содержащего экзоны и интроны, была рредставлена на рис. 102. [c.191]

    Определение нуклеотидных последовательностей в составе гомологичных генов (например, генов глобинов), кодирующих полипептиды со сходным строением и функцией у одного или разных организмов, показало, что наибольшим изменениям в эволюции подвергались интроны, а не экзоны. В интронах обнаружены встав ки, делеции и другие перестройки, в то время как последователь ности экзонов оказываются значительно более консервативными Изменения в нуклеотидных последовательностях экзонов часто обу словлены лишь отдельными нуклеотидным заменами. Эти наблю дения также можно истолковать в пользу представлений о том, что [c.194]


    Разорванные (мозаичные) гены, составленные из экзонов и интронов, характерны для самых разных представителей эукариот — растений, дрожжей, различных беспозвоночных (черви, насекомые), птиц и млекопитающих, включая человека. Наличие и расположе- [c.172]

    Гены, разорванные интронами, возникли достаточно давно. Так, например, общин план строения генов -глобина из двух интронов и трех экзонов очень сходен у всех животных, дивергнро- [c.191]

    Функциональная роль отдельных экзонов при рассмотрении случаев альтернативного сплайсинга, возможно, прояснится на примере гена позвоночных, кодирующего полипептидные компоненты целой серии гликопротеидов — фибронектинов, секретируемых клеткой. Некоторые типы фибронектинов, являясь компонентами внеклеточного матрикса, связываются с клеткой и определяют свойства ее поверхности, другие находятся в плазме крови. Разные типы фибронектинов образуются путем альтернативного сплайсинга. Фибронектин плазмы, который не связан с клеточной поверхностью, синтезируется на мРИК, не содержащей одного из экзонов, возможно как раз того, который кодирует участок молекулы белка, отвечающий за связывание с клеткой. [c.183]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    Рнс. 110, Сложные структуры генов, вероятно, образованные в результате сортировки общи.х предковых экзонов [c.193]

    По-видимому, два интрона утеряны. Полипептидная последовательность, кодируемая вторым, третьим, пятым и шестым экзонами, содержится также в составе фактора комплемента С9, где она также кодируется отдельными экзонами. Далее расположен район из восьми экзонов, он гомологичен району гена, кодирующему предшественник эпидермального фактора роста. Экзоны 7, 8 и 14 представляют собой повторы, кодирующие по 40 аминокислот и содержащиеся в генах, контролирующих процесс свертывания крови. Затем расположен экзон, кодирующий домен, обогащенный сери-ном и треонином, который является мишенью 0-гликозилирования рецептора. В итоге структура гена рецептора липопротеида низкой плотности в целом наглядно демонстрирует возможность перетасовки экзонов и соответствующих автономных функциональных структур сложной белковой молекулы. [c.194]


    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    Вырезание Ас-подобных элементов у растений может быть неточным — элемент оставляет отпечаток своего присутствия внутри гена, образуя, например, дупликацию или вставку нескольких нуклеотидов в районе внедрения. В результате могут из.меняться свойства белка или характер экспрессии гена, если элемент соответственно побывал в экзоне или в регуляторном районе гена. [c.232]

    ДНК-полимераза I состоит из одного полипептида длиной 911 аминокислотных остатков (а. а.) (Л1г=102 000 D). Этот фермент отличается от прочих ДНК-полимераз Е. oli наличием 5 -экзонуклеазной активности. Фактически ДНК-полимераза I — это два фермента на одной полипептидной цепи ограниченный протеолиз расщепляет эту ДНК-полимеразу на большой и малый фрагменты с разными активностями. Большой субфрагмент ДНК-па имеразы I (называемый также ДНК-полимеразой Кленова или фрагментом Кленова) обладает полимеризующей и З -экзонуклеазной (корректирующей) активностями. Л алый субфрагмент несет 5 -экзонуклеаз-ную активность. 5 -экзонуклеаза ДНК-полимеразы I действует на 5 -конец полинуклеотидной цепи только в составе дуплекса и отщепляет от него как моно-, так и олигонуклеотиды. Направление действия 5 -экзон клеазы совпадает с направлением полимеризации новой цепи ДНК, т. е. в ходе полимеризации экзонуклеаза расчищает дорогу для полимеразы (рис. 29). Подобные свойства ДНК-полимеразы I соответствуют ее функциям в клетке эта полимераза удаляет различного рода дефекты нз ДНК в ходе репарации и служит вспомогательной поли- [c.48]

    Протяженные транскрипты эукариотических генов содержат последовательности интронов (см. гл. IX, раздел 2), которые при образовании мРНК вырезаются, тогда как нуклеотидные последовательности экзонов сшиваются, т. е. происходит процесс сплайсинга (рис. 102). [c.172]

    Принципиальной является возможность образования нескольких разных типов мРН К в результате изменения хода сплайсинга одного и того же первичного транскрипта. Для разных генов показаны так называемые альтернативные пути сплайсинга, основанные на использовании разных экзонов одного гена при образовании мРНК-В результате альтернативного сплайсинга зрелые молекулы мРНК, образующиеся при транскрипции одного гена, включающего несколько экзонов, будут различаться набором экзонов, кодирующих отдельные участки молекулы белка. Кроме того, последовательность экзона в ходе одного пути сплайсинга может служить нитроном в ходе альтернативного пути сплайсинга. Таким образом, разные способы экспрессии одного гена могут приводить к образованию [c.182]

    Наличие путей альтернативного сплайсинга существенно увеличивает число разных мРНК, транскрибируемых с одного гена (рис. 106, 2, б). При образовании мРНК тропонина с помощью механизма альтернативного сплайсинга используется также взаимоисключающая и взаимозаменяемая экспрессия экзонов 16 и 17, кодирующих определенный участок полипептидной цепи тропонина. На разных стадиях развития образуются а- и р-тропонины, различающиеся последовательностью из 14 аминокислот, начиная с 229-го и кончая 242-м аминокислотным остатком. Остальные участки полипептидной цепи этих изотипов тропонина идентичны. Остается не ясным, какие изменения функциональных свойств тропонина обусловлены экспрессией того илн иного экзона в составе мРИК- [c.183]

    Существование интронов в эукариотических генах обеспечивает регуляцию экспрессии генов в развитии благодаря альтернативным путям сплайсинга, в основе которых лежит возможность испмьзо-вать разные экзоны одного гена для образования разных мРНК. Кроме того, в нитронах (т. е. внутри гена) могут на.ходиться важные элементы регуляции транскрипции — усилители, нли энхансеры Сангл. enhan ers) см. гл. X). [c.191]

    Если белок содержит ряд структурно сходных повторяющихся доменов, то наблюдается строгое соответствие отдельных экзонов доменам или субдоменам белковой молекулы. Гены, относящиеся к так называемому сверхсемейству генов иммуноглобулинов , содержат разное число экзонов, кодирующих домены полипептидной цепи, каждый из которых включает около ПО а. о. Гомология между отдельными доменами этих белков, выполняющих разные функции в организме, наблюдается на уровне первичной, вторичной и третичной структуры. Гены этого семейства могут содержать один экзон (ген р2-микроглобулина), два или четыре (гены секретируемых антител В-клеток) и, наконец, пять экзонов (ген гликопротеина плазмы человека). р-Кристаллины мыши содержат четыре белковых домена, каждый из которых включает определенный структурный мотив полипептидной цепв , "щ х  [c.192]


    Ген рецептора липопротеида низкой плотности, обеспечивающего транспорт холестерола, имеет раз.черы более 45 т. п. н. и содержит 18 экзонов, из которых часть также обнаружена в генах, кодирующих совсем другие функции (рис. 110, ). Рецептор является [c.193]

    Предполагается, что мозаичная экзон-интронная структура генов, свойственная эукариотам, вероятно, была более древней, чем безынтронная, прокариотическая. В таком случае традиционные филогенетические представления, согласно которым прокариот помещают в основание эволюционного древа, а эукариот — на вершины, должны быть пересмотрены. Геном прокариот, как правило, не содержащий генов с интронами, рассматривается как компактный (рационализированный), образовавшийся в результате потери интронов, например, в результате отбора на скорость репликации. Напротив, предполагается, что мозаичная структура генов определяет эволюционные возможности генома, тогда как прокариоты, утерявшие интроны, представляют собой эволюционный тупик. Заметим, однако, что интроны, удаляемые в результате сплайсинга, изредка обнаруживаются при экспрессии генов в клетках бактерий, например в гене тимидилатсинтетазы фага Т4. [c.194]

    В генах, которые реактивируются, частичное деметилирование затрагивает как 5 -фланг, примыкающий к промотору, так и районы экзонов и интронов. или, наконец, 3 -фланги гена. Активное состояние геиа характеризуется определенным рисунком распределения Метилированных сайтов в районе гена, но не связано с полным деметилированием. [c.219]


Смотреть страницы где упоминается термин Экзоны: [c.48]    [c.77]    [c.167]    [c.170]    [c.171]    [c.171]    [c.173]    [c.173]    [c.174]    [c.175]    [c.175]    [c.176]    [c.177]    [c.178]    [c.178]    [c.180]    [c.181]    [c.182]    [c.183]    [c.184]    [c.191]    [c.193]    [c.193]    [c.193]    [c.193]    [c.194]    [c.195]    [c.197]    [c.203]    [c.217]    [c.217]    [c.228]   
Химический энциклопедический словарь (1983) -- [ c.125 ]

Молекулярная биология (1990) -- [ c.0 ]

Биологическая химия Изд.3 (1998) -- [ c.490 , c.491 ]

Молекулярная биотехнология принципы и применение (2002) -- [ c.36 , c.37 , c.472 , c.473 , c.474 , c.475 ]

Биологическая химия (2002) -- [ c.164 ]

Биохимия (2004) -- [ c.461 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.125 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.884 , c.917 ]

Гены (1987) -- [ c.52 , c.53 , c.246 , c.251 , c.252 , c.253 ]

Современная генетика Т.3 (1988) -- [ c.60 , c.217 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.131 , c.239 , c.240 ]

Генетика человека Т.3 (1990) -- [ c.134 ]

Молекулярная иммунология (1985) -- [ c.110 ]

Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.186 , c.187 , c.255 ]

Эволюция без отбора (1981) -- [ c.186 , c.187 , c.255 ]

Искусственные генетические системы Т.1 (2004) -- [ c.0 ]

Физиология растений (1989) -- [ c.34 , c.311 , c.313 ]

Основы генетической инженерии (2002) -- [ c.27 , c.34 , c.50 ]

Гены и геномы Т 2 (1998) -- [ c.7 , c.17 , c.23 , c.104 , c.170 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.131 , c.239 , c.240 ]

Биологическая химия (2004) -- [ c.129 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.79 , c.145 ]




ПОИСК







© 2025 chem21.info Реклама на сайте