Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репликация в скорость

    Особенности репликации ДНК у эукариот. Репликация ДНК у эукариот, по существу аналогичная репликации ДНК у прокариот, имеет ряд особенностей. Например, вместо одной точки репликации в ДНК эукариот имеются специфические точки начала , так называемые автономно реплицирующие последовательности (около 300 нуклеотидных пар) в дрожжевой клетке таких элементов около 400. Кроме того, скорость движения репликационной вилки у эукариот (примерно 50 нуклеотидов [c.483]


    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]

    З-Ю п. н. Оказывается, у всех организмов точность работы репликативной машины (включающей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]

    У эукариот репликация происходит в нескольких участках, катализируется тремя ДНК-полимеразами и требует присутствия многих других ферментов и белковых факторов, в результате скорость репликации намного меньше около 50 пар оснований в секунду. [c.55]

    III удлиняет эти затравки до тех пор, пока не упрется в предыдущую затравку, т. е. синтезирует фрагменты Оказаки. Затем действует ДНК-полимераза I, которая продолжает удлинять фрагменты Оказаки, одновременно гидролизуя РНК-затравку предыдущего Фрагмента, используя свою 5 -экзонуклеазную активность. После действия ДНК-полимеразы I между двумя соседними фрагментами остается только одноцепочечный разрыв, который зашивает ДНК-лигаза. Таким образом, в репликативной вилке одновременно работают около 20 разных полипептидов, осуществляя сложный, высо-Коупорядоченный и энергоемкий процесс. Не говоря уже о том, что Каждый нуклеотид переходит в ДНК из богатого энергией предшественника, множество. молекул АТР тратится на действие хеликаз, на синтез РНК-затравок, которые затем удаляются, на активацию ДНК-полимеразы III при переходе на каждый новый фрагмент Оказаки запаздывающей цепи и на работу топоизомераз по Раскручиванию взаимозакрученных цепей ДНК (см. ниже). Такова цена высокой точности и скорости репликации. [c.57]


    Нормальное размножение клеток требует высокой точности копирования ДНК-матрицы. Генетический материал живых организмов имеет огромные размеры. Даже у бактерий ДНК-полимераза должна практически безошибочно скопировать молекулу ДНК длиной около 3-10 п. н. Оказывается, у всех организмов точность работы репликативной машины (включаюш.ей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]

    В дальнейшем за счет реакций этого типа нуклеотидные субъединицы присоединяются к З -концам. Скорость транскрипция составляет при этом приблизительно 50 нуклеотидов в 1 с при 25 С, что приблизительно в 30 раз ниже скорости репликации ДНК- [c.207]

    Исходя из наблюдаемой скорости появления точковых мутаций (одна мутация на 10 удвоений гена), мы можем подсчитать, что одна мутация приходится на 10 репликаций единичного нуклеотида. Точковые мутации имеют тенденцию к обратному мутированию, причем обратные мутации часто происходят с такой же скоростью, как и прямые. Это значит, что в одной из 10 обратных мутаций будет мутировать тот же самый нуклеотид, в результате чего ген вернется к исходному виду. Это явление легко можно объяснить. Например, если Т будет замещен на С, поскольку С образует минорный таутомер и спаривается с А, то мутация приведет к тому, что в двойной спирали ДНК-потомков появится пара ОС. При репликации этой пары существует хотя и малая, но определенная вероятность того, что С в цепи материнской ДНК вновь образует минорную таутомерную структуру и образует пару с А, а не с О, что в свою очередь приведет к обратному мутированию. [c.247]

    Все описанные выше типы репарации катализируются конститутивными ферментами, присутствующими в клетках в постоянных количествах. Кроме того, существует репарация, осуществляемая индуцибельными ферментами, так называемая SOS-репарация. Этот механизм включается для спасения клетки в условиях, когда нарушения ДНК реально угрожают ее жизнеспособности. Во-первых, при этом снижается скорость репликации, что делает процесс репарации более эффективным во-вторых, блокируется деление клеток  [c.454]

    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Скорость репликации у прокариот очень высока. Репликация обычно происходит в одном участке, катализируется одним ферментом - ДНК-полимеразой и достигает скорости 1700 пар оснований в секунду, т.е. весь геном бактериальной клетки синтезируется за 40 мин. [c.55]

    При высокой скорости роста бактерий инициация нового раунда репликации происходит еще до окончания предыдущего. Такая дихотомическая репликация позволяет бактериям при благоприятных условиях иметь время генерации меньшее, чем время, необходимое на завершение полного раунда репликации ДНК) [c.67]

    Возникновение генетического кода может определяться двумя механизмами. Во-первых, в согласии с теорией Эйгена, возможно-преимущественное выживание объектов с белковой оболочкой,, обеспечивающей наибольшую скорость репликации. В результате-такого отбора может возникнуть совокупность объектов с одинаковыми белковыми чехлами, но с различными последовательностями нуклеотидов. Одной последовательности аминокислот будет соответствовать несколько последовательностей нуклеотидов. Однако в этом случае эволюция может прекратиться в результа- [c.550]

    Процесс транскрипции находится в клетке под строгим контролем, поэтому имеет место как неодинаковое транскрибирование во времени разных участков ДНК (генов), так и неодинаковая скорость, с которой гены могут транскрибироваться. В результате количество молекул иРНК в клетке, комплементарных разным генам, сильно различается. Хотя в целом механизмы синтеза ДНК и РНК сходны, процесс транскрипции не обладает той степенью точности, которая характерна для репликации ДНК. Однако поскольку иРНК не способна к самовоспроизведению, возникающие при ее синтезе ошибки в последующих клеточных генерациях не воспроизводятся и, следовательно, не могут наследоваться. [c.142]

    Клетки Е. oli способны расти с различными скоростями время удвоения варьирует от 18 до более чем 180 мин. Так как бактериальная хромосома представляет собой один репликон, частота репликационных циклов контролируется числом событий инициации в единственной точке начала репликации. Скорость синтеза ДНК при постоянной температуре более или менее постоянна. Репликация происходит с одинаковой скоростью до тех пор, пока не наблюдается ограничений в снабжении предшественниками. [c.399]


    ДО ADP и фосфата. Образованный таким образом комплекс характеризуется практически неограниченной процессивностью синтеза. Видимо АТР обеспечивает необрати.мость присоединения к матрице (до конца копирования). Для элонгации (удлинения затравки) тоже необходим АТР, но лишь в качестве аллостерического эффектора (на этой стадии его можно заменить негидролизуемым аналогом), позволяющего ДНК-полимеразе чувствовать состояние энергетического баланса клетки и проводить репликацию лишь при условии достаточного энергообеспечения. При опти.мальных условиях скорость синтеза ДНК холоферментом ДНК-полимеразы П1 in vitro составляет около 1000 нуклеотидов в секунду, что соответствует скорости репликации in vivo. [c.50]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]

    Предполагается, что мозаичная экзон-интронная структура генов, свойственная эукариотам, вероятно, была более древней, чем безынтронная, прокариотическая. В таком случае традиционные филогенетические представления, согласно которым прокариот помещают в основание эволюционного древа, а эукариот — на вершины, должны быть пересмотрены. Геном прокариот, как правило, не содержащий генов с интронами, рассматривается как компактный (рационализированный), образовавшийся в результате потери интронов, например, в результате отбора на скорость репликации. Напротив, предполагается, что мозаичная структура генов определяет эволюционные возможности генома, тогда как прокариоты, утерявшие интроны, представляют собой эволюционный тупик. Заметим, однако, что интроны, удаляемые в результате сплайсинга, изредка обнаруживаются при экспрессии генов в клетках бактерий, например в гене тимидилатсинтетазы фага Т4. [c.194]

    Механизм действия ДНК-полимеразы I, описываемый уравнением (15-2), обеспечивает лишь прямой путь образования комплементарной цепи ДНК каким образом может осуществляться копирование двухцепочечной ДНК, с помощью этого механизма нельзя объяснить. Одна из проблем состоит в том, что для копирования двухцепочечной ДНК две цепи должны расплестись и отделиться одна от другой. Если расплетание цепей и репликация происходят лишь в одной репликационной вилке, как это следует нз экспериментов Кернса, то для того, чтобы хромосома Е. oli могла полностью реплицироваться за 20 мин, вся молекула должна раскручиваться со скоростью 300 оборотов в 1 с. Кроме того, для осуществления процесса репликации в хромосоме должно быть образование типа шарнира (или, по крайней мере, разрыв в одной из цепей) [уравнение (15-3)]. [c.197]

    Продукт гена N делает возможной также и правостороннюю транс-, крипцию через гены О, и Q и далее уже с меньшей скоростью вдод ь остальной хромосомы до точки а. Гены О и детерминируют синтез белков, позволяющих репликационной системе бактерии-хозяина начать образование новых молекул фаговой ДНК. Репликация начинается в точке ori и протекает в обоих направлениях, как это описано в разд. Д. Ген Q детерминирует синтез белка, который значительно ускоряет транскрипцию поздних генов, начиная с промотера Pr. [c.261]

    Скорость репликации в этих ядрах оказалась равной приблизительно 300 000 оснований в одну секунду, причем, согласно данным, полученным в этой же работе, репликационные внлки в хромосомах животных не могут двигаться быстрее, чем со скоростью - 50 оснований в секунду. Таким образом, можно было ожидать, что в хромосоме имеется как минимум 6000 вилок или одна вилка на 10 000 оснований. И такое большое число вилок в действительности удалось обнаружить [191]. Вилки появляются попарно, причем при внимательном изучении оказалось,, что во многих коротких участках содержится одноцепочечная ДНК, т. е. как будто бы одна цепь в вилке реплицируется быстрее другой. Строение одноцепочечных областей между двумя образуюш,ими пары вилками указывает на двустороннюю направленность репликации (рис. 15-29). Репликация в случае Ba illus subtilis также протекает в двух направлениях, однако вилки перемещаются в двух направлениях с разной скоростью [192]. Репликация ДНК фагов X и Т7 также протекает в двух, направлениях [193], тогда как митохондриальная ДНК мыши реплицируется лишь в одном направлении [194]. [c.274]

    Нарушить последовательность процессов репликации бактериальной хромосомы и клеточного деления также можно, выращивая бактерии при разной температуре. Культивирование Ba illus subtilis на богатой питательной среде при 37 °С приводит к интенсивному делению бактериальной хромосомы и росту клеток, в результате чего в культуре образуются нитевидные клетки, содержащие множество хромосомных копий с отсутствующими совсем или недосформированными (незамкнутыми) поперечными перегородками. При замедлении скорости роста наблюдается деление нитевидных клеток, приводящее к образованию бактериальных клеток нормальной длины. [c.61]

    Синтез белка наиболее сложный процесс из всех, протекающих в клетках. Его прерывание или извращение возможно на всех трех уровнях репликации, транскрипции или трансляции. Химические вещества, называемые мутагенами, воздействуют на процессы репликации и на структуру транскриптона и извращают информацию о синтезе полипептидов. Такие мутагены окружающей среды, как бензоперен и линдан, подавляют синтез ДНК и таким образом прерывают белок-синтетические процессы. Отмечено влияние токсикантов на процессы транскрипции. В этом отнощении показательно влияние химических веществ, имитирующих действие эстрогенов, так называемых ксено-эстрогенов. К ним относятся, например, генистан или госсипол, способные взаимодействовать с эстрогеновыми рецепторами и изменять скорость транскрипции. [c.475]

    Основная функция нуклеиновых кислот заключается в хранении, воспроизведении и передаче генетической информации. Являясь системами динамическими, нуклеиновые кислоты осуществляют все процессы с высокой скоростью и эффективностью, постоянно аэаимодействуя с соответствующими белками, прежде всего с ферментами. Главными процессами с их участием являются репликация, транскрипция и трансляция. [c.406]

    Цикл клеточного деления на примере Е oli можно представить двумя временными интервалами, обозначаемыми латинскими буквами С и D Первая из них обозначает фиксированное время, необходимое для репликации всей бактериальной хромосомы (например, 15 мин ), что соответствует скорости движения отдельной [c.168]


Смотреть страницы где упоминается термин Репликация в скорость: [c.570]    [c.70]    [c.66]    [c.66]    [c.68]    [c.69]    [c.196]    [c.553]    [c.252]    [c.501]    [c.66]    [c.66]    [c.68]    [c.69]    [c.479]    [c.485]    [c.542]    [c.182]    [c.408]    [c.433]    [c.746]   
Биохимия Том 3 (1980) -- [ c.111 , c.207 ]




ПОИСК







© 2025 chem21.info Реклама на сайте