Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деметилирование

    ДЕГИДРОГЕНИЗАЦИЯ — ДЕМЕТИЛИРОВАНИЕ — ДЕКАРБОНИЛИРОВАНИЕ [c.487]

    Деметилирование ароматических углеводородов водяным паром является процессом, родственным окислению алканов и их разложению водяным паром (разд. V.1.A)  [c.179]

    Значения кажущихся энергий активации деалкилирования толуола в присутствии водяного пара на различных катализаторах близки (138—167 кДж/моль). Считают [264, 265], что это является косвенным подтверждением однотипности механизма реакции деметилирования на различных катализаторах. Предполагаемый механизм включает стадию разрыва связи Сар—СНз, адсорбированной на поверхности металла, с образованием молекулы бензола и метиленового радикала, который реагирует с молекулами воды, адсорбированными на гидрофильной поверхности носителя. [c.176]


    В зависимости от условий происходят реакции 1) деметилирования, 2) дегидрогенизации и 3) разрыва цепи. [c.250]

    На основании квантово-химического расчета постулируется [248], что при каталитическом (Pt, Р(1, N1) гидрогенолизе метилциклопентана положительная поляризация молекулы углеводорода, вызванная смещением электронной плотности от молекулы к поверхности катализатора, должна способствовать снижению степени деметилирования. При этом должна увеличиваться доля н-алканов и 2-метилпентана при некотором снижении доли 3-метилпентана, что согласуется с экспериментальными данными. [c.168]

    Таким образом, процессы деметилирования представляют собой высокотемпературные процессы гидрокрекинга, в которых создаются максимально благоприятные условия для радикальных реакций расщепления и всеми мерами предотвращается гидрирование ароматических углеводородов., Разработано много модификаций как каталитических, так и некаталитических процессов деметилирования (см. гл. 1, а также обзоры ), различающихся сырьем и технологическими параметрами. Применение катализаторов позволяет снижать температуру процесса на 100—150 °С (500—550 против 650—700 °С), что в свою очередь снижает капитальные вложения вследствие применения более дешевых металлов для изготовления оборудования, но повышает стоимость эксплуатации из-за расходов на производство и регенерацию катализатора. В зависимости от конкретных экономических условий применяются и каталитические, и некаталитические процессы в настоящее время в ряде стран до 20—25% бензола и более 50% нафталина получают при помощи процессов гидродеалкилирования Все процессы протекают под давлением водорода. [c.327]

    В. Дегидрогенизация и деметилирование. Реакция дегидрогенизации и деметилирования может быть иллюстрирована р гем-диметил-циклогексенами и циклогексадиенами, полученными из изофорона [5, 7, 33]  [c.488]

    Бициклические нафтены Св и С,, скорость образования которых невелика (реакция деметилирования не характерна для ионного процесса), не успевают накапливаться в реакционной среде, так как у них раскрытие цикла происходит с большой скоростью. [c.259]

    На М1-катализаторах в той же области температур [178] наблюдали и деметилирование водородом [c.180]

    Прп деметилировании смеси изооктанов, в которой содержание [c.362]

    Этан-пропан. Несмотря на то что этилен можно приготовить пиролизом любого углеводородного сырья, этап, пропан, и смеси этих двух компонентов рассматриваются как наиболее приемлемые исходные продукты. Процесс строго термический, так как пе обнаружено катализатора, способного эффективно увеличивать скорость дегидрирования этана или дифференциально воздействовать на две стороны разложения пропана — дегидрирование и деметилирование. Пиролиз ведется при температуре около 730—815 С и под давлением 1,4—2,1 кГ1см время контакта — около 0,7—1,3 сек. Для уменьшения конденсационных реакций и одновременно — подвода тепла в зону реакции добавляют инертный разбавитель, такой как водяной пар. В табл. П-12 приведены типичные продукты подобного превращения. [c.99]


    Метилированные нафталины несколько менее стойки, чем на4)талин. Одиако их деметилирование н конденсация наблюдаются только в жестких условиях пиролиза. [c.421]

    При рубрикации основного материала монографии — результатов изучения превращений различных углеводородов и их функциональных производных в условиях гидрогенизационных процессов — встретились естественные трудности. Действительно, материал можно было располагать по группам процессов, по классам веществ, по виду катализаторов, по типу превращений (ионные и радикальные). Каждый вид рубрикации имел свои преимущества и недостатки. Автор избрал рубрикацию по группам гидрогенизационных процессов, выделив жидкофазные и парофазные процессы гидрогенизации, а также специфические процессы низкотемпературной гидрогенизации, гидроочистки, гидрокрекинга и деметилирования. Это позволило подчеркнуть и охарактеризовать особенности каждой группы процессов, но, естественно, затруднило сопоставление особенностей превращений отдельных классов углеводородов и их производных, а также особенностей ускорения реакций различными катализаторами. В необходимых случаях такие сопоставления сделаны, хотя это и нарушает принцип рубрикации, в других случаях читатель найдет ссылки на предыдущие или последующие разделы, в которых изложен аналогичный материал, но для условий другого процесса. [c.6]

    Данные, приведенные в табл. 50, подтверждают для пиридина предложенную выше (стр. 211) схему деструкции и в то же время показывают, что основные реакции сопровождаются реакциями алки-лирования, конденсации и, в небольшой степени и не всегда, изомеризации. Для пиридинов, в отличие от фенолов, нехарактерны реакции деметилирования. Так, в продуктах гидрирования а-пико-липа найдено лишь очень небольшое количество пиридина, а в гидрогенизате 2-метилхинолина не удалось обнаружить хинолин из 2-метилиндола получено только 3,1 % индола [c.213]

    Изомеризация — ионная реакция, но расщепление при температуре 420 °С и выше может протекать не только как ионная, но и как радикальная реакция. Для оценки интенсивности протекания этих реакций целесообразно выделить продукты деметилирования — типично радикальной реакции — и продукты раскрытия кольца — реакции, чаще протекающей по ионному механизму. На скорость деметилирования больше всего влияет температура, что видно по выходам нафтенов Св и Се, достигающих значительных величин при 500 °С. [c.240]

    Можно также отметить, что процессы расщепления протекают сложно доли продуктов чистого раскрытия кольца и чистого деметилирования невелики по сравнению с общим выходом продуктов расщепления. Количество продуктов деметилирования в [c.240]

    Доказано, что нри гидрокрекинге протекают реакции не только деметилирования, но и метилирования образующихся углеводородов [c.311]

    При изучении термодинамики реакций деметилирования толуола и ксилола вычислены константы равновесия этих реакций - [c.328]

    В случае полиметилциклопентанов гидрогенолиз значительно осложняется реакциями деметилирования и скелетной изомеризации. Далеко идущие перегруппировки углеродного скелета происходят в тех случаях, когда из-за низкой реакционной способности исходной молекулы опыты проводят при 350 °С и выше, например для три- и тетраметилциклопентанов [163], в которых миграция и элиминирование метильных групп способствуют образованию таких циклопентановых углеводородов, которые легче подвергаются гидрогенолизу [350°С, (10% Р1)/А120з] (см. схему на с. 131). [c.130]

    В работах Го и сотр. [245—247] исследовались механизмы гидрогенолиза и изомеризации циклоалканов и алканов на металлах и их сплавах. Изучены [245, 246] превращения 1,1,3-триметилцикло-пентана в присутствии пленок Р1, Рс1, Со, Ре, N1, КЬ и XV. Относительные скорости деметилирования с образованием гел -диметилцик-лопентана и метана зависят от металла и температуры. Р1 и Рс1 оказались наилучшими катализаторами дегидроизомеризации в арены, Р1 является наиболее селективным катализатором образования ксилолов Рс и КЬ (как и Ре) дают смесь продуктов с преобладанием толуола, для N1 характерно образование низших (Сг—Се) алканов, для Со — образование метана. Полагают, что образование ксилолов происходит путем расширения пятичленного кольца при четвертичном углеродном атоме с образованием а,а,у-триадсорбирован-ных соединений и адсорбированного трехчленного цикла в качестве промежуточных продуктов. [c.168]

    Исследовались [247] каталитические превращения гексанов и метилциклопентана, в том числе меченных С, на сплавах Pd—Аи и Р1—Аи, нанесенных в количестве 10% на АЬОз. Обнаружено, что на Р(1/А120з, так же как и на Рс1—Аи/А Оз, основная реакция — деметилирование изомеризация н-гексана проходит по циклическому механизму. При всех температурах прокаливания активность Р(1/А120з выше, чем сплавов Рс1—Аи, а селективность практически одинакова. При переходе от чистой платины к сплавам Р1—Аи механизм и селективность реакции сушественно изменяются. Так, на Р1/А120з изомеризация н-гексана протекает по механизму сдвига [c.168]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]


    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]

    Гидроформинг. В основе процесса гидроформинга лежат реакции дегидрирования и деметилирования. Процесс применялся еще до второй мировой войны для получения моторного топлива, добавок к авиационному бензину и нроизводства толуола. Процесс дает продукт со средними октановыми числами и эффективен только для переработки высококипящих фракций углеводородов (Сэ и выше). Гидроформинг проводится в присутствии алюмомо-либденового катализатора при температуре 500—550°, давлении 10—20 ат и высоком содержании водорода. В связи с отложением на катализаторе углеродистых соединений активность его быстро снижается. Это вызывает необмдимость периодического ведения процесса с переключением аппаратов на реакцию и регенерацию. Продукты гидроформинга на ректификационных колоннах разделяются на газовую часть, состоящую из водорода, метана и небольшого количества этана и пропана, и жидкую часть, разделяемую в свою очередь на бензин и ароматические углеводороды. [c.155]

    Селективное каталитическое деметилирование изооктана под действием водорода. Исходным продуктом служит фракция изо-октапа, полученного путем гидрогенизации продуктов горячей сернокислотной полимеризации изобутилена. В пой содержатся следующие четыре изооктана 2,2,4- 2,2,3- 2,3,4- и 2,3,3-три-метилиеитаны. Путем ректификации удаляют из смеси изооктанов [c.362]

    При термическом растшде ксилолов находят обычные продукты конденсацин и продукты деметилирования (бензол, толуол). м-Ксинол устойчивее, чем его изомеры поэтому в продуктах пиролиза он преобладает. [c.420]

    В книге впервые в литературе обобщены результаты многочисленных исследований химии и механизма основных гидрогенизационных процессов, играющих важную роль в нефтепереработке и нефтехимии. Даны основные закономерности гидрирования органических соединений, рассмотрены механизм, кинетика и катализаторы процессов деструктивной гидрогенизации, гидрокрекинга, гпдроочпстки и деметилирования. [c.2]

    Сообщается о разработке процесса гидрирования легкого пироконденсата. Катализатор регенерируемый Без приведения условий и сведений о катализаторе сообщается об осуществлении в промышленном масштабе процесса деметилирования толуола (процесс детол фирмы Ноибгу). Выход бензола 81,6%, тяжелых остатков — 1,2%, остальное — газ. Чистота, бензола 99,95%, расход водорода 2,2% [c.68]

    Описывается процесс Bextol фирмы Shell Oil деметилирования толуола. Выход бензола 96,8% от теоретического, расход водорода 2,04 моль/моль [c.69]

    Сообщается об условиях и опыте работы процесса деметилирования толуола — детол . Катализатор очень стабилен и не менялся в течение четырех лет. Чистота бензола 99,95%, содержание тиофена менее 1 МЛН 1. (См. 802) [c.73]

    Важно отметить, что из двух возможных путей расщепления метилциклопентана — деметилирования с образованием циклопентана и раскрытия кольца с образованием гексанов — при низких температурах преобладает второй, а при высоких (500 °С) — первый Деметилирование более характерно для термического процесса или для процессов, протекающих в присутствии катализаторов, но при высоких температурах и малых давлениях Раскрытие кольца более характерно для мягких условий. Закономерность направленности раскрытия циклонентанового кольца сохраняется полностью. В самом деле, во всех гидрогенизатах во фракции гексанов преобладает 2-метилпентан. Если принять его количество за единицу, то количества 3-метилпентана варьируют от 0,26 до 0,70, а количества н-гексана — от 0,30 до 0,61. Аналогичное преобладание 2-метилпентана в продуктах расщепления бензола и циклогексана отмечено и для других высокотемпературных катализаторов 2 . Так, например, при гидрогенизации бензола в присутствии катализатора Сг - - 2п -(-8 - - Г на алюмосиликате было выделено 4,1% циклогексана, 31,2% метилциклопентана, 7,9% [c.228]

    В ранних работах было установлено,что при деструктивной гидрогенизации толуола, метилциклогексана этилбензола и гекса-гидромезитилена в присутствии МоЗа протекают процессы изомеризации, деалкилироваиия и раскрытия колец, но индивидуальных углеводородов было выделено мало (пентан, бензол, метилциклогексан, концентраты 1,2- и 1,3-диметилциклопентанов). При гидрогенизации на никелевых, платиновых и палладиевых катализаторах при высоких температурах (460 °С) и небольшом давлении идут сложные радикальные реакции, приводящие к образованию метиленовых радикалов, а также к метилированию, деметилированию и изомеризации [c.240]

    Главный ациклпческий продукт —изобутан ароматические углеводороды в основном Сю —Сц, нафтены С7 —Сд. Отношение иаонарафины /<-иара-фины значительно выше термодинамически равновесного. Хотя, судя по высоким выходам ароматических углеводородов Сю —Сц, должно иметь место деметилирование, отсутствие заметных количеств метана (всего 3,6—10,3 моль на 100 моль превращенного продукта), этана, бензола, толуола указывает на необычную реакцию спаривания метильных заместителей в осколки Сд и изо-С  [c.308]

    Интересно отметить, что при гидрокрекинге дурола и изодурола на катализаторе (А1 + Со +Мо), ускоряющем радикальные реакции, образуются в основном метан и триметилбензолы, т. е. в данном случае протекает ярко выраженная реакция деметилирования. Используя метод меченых атомов, удалось показать, что при гидрокрекинге дурола протекают как реакции деметилирования, так и реакции метилирования полученных углеводородов 2. При этом оказалось, что в ряду С — Сщ относительные скорости реакций метилирования уменьшаются, а относительные скорости деметилиро-вання возрастают. [c.316]

    Процессы деметилирования являются частным случаем процессов парофазной гидрогенизации и гидрокрекинга, но их химические цели — отщепление метильных заместителей без затрагивания ароматических ядер — заставляют проводить такие превращения в жестких условиях, что накладывает на них некоторые специфические особенности. В самом деле, ионное отщепление метильных заместителей энергетически почти невозможно из-за высокой энергии образования иона Н3С+ (см. гл. 2), следовательно в процессах деме-тилирования необходимо обеспечить исключительное протекание радикальных реакций. Последние усиливаются больше всего с ростом температуры так, что при 450 —500 °С начинают преобладать даже процессы деметилирования циклоалканов (см. стр. 228). С другой стороны, рост температуры сдвигает равновесие [c.327]


Смотреть страницы где упоминается термин Деметилирование: [c.490]    [c.175]    [c.175]    [c.179]    [c.736]    [c.180]    [c.362]    [c.206]    [c.260]    [c.327]    [c.327]   
Органический синтез. Наука и искусство (2001) -- [ c.321 ]

Химия гемицеллюлоз (1972) -- [ c.98 ]

Алкалоидлар химияси (1956) -- [ c.56 ]

Органический синтез (2001) -- [ c.321 ]

Реагенты для органического синтеза Т.7 (1978) -- [ c.3 , c.57 , c.609 ]

Реагенты для органического синтеза Том 6 (1972) -- [ c.30 , c.95 , c.170 ]

Реагенты для органического синтеза Том 7 (1974) -- [ c.53 , c.57 , c.609 ]

Химия алкалоидов (1956) -- [ c.56 ]

Органическая химия (1990) -- [ c.193 ]

Химия Краткий словарь (2002) -- [ c.92 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.150 ]

Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.211 ]

Технология нефтехимического синтеза Часть 1 (1973) -- [ c.0 ]

Химия и биохимия углеводов (1977) -- [ c.139 ]

Агрохимикаты в окружающей среде (1979) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

ДНК деметилирование и экспрессия ген

Деметилирование ДНК Метилирование ДНК

Деметилирование аминов

Деметилирование изопарафинов

Деметилирование метиловых эфиро

Деметилирование окислительное в сочетании с окислительным аммонолизом

Деметилирование окислительное конверсионное

Деметилирование окислительное метилпиридинов

Деметилирование окислительное толуола

Деметилирование оснований

Деметилирование предельных углеводородов

Деметилирование толуола

Деметилирование толуола с водяным паром

Деметилирование фенолокислот

Катализаторы деметилирования толуола

Лигнин деметилирование

Молибден, окись деметилирование

Никель на носителях деметилирование

Нитро метокси метилкумарин, деметилирование

Окислительное деметилирование

Пентаметилбензол, деметилирование

Пентаметилбензол, деметилирование с фосгеном

Пентаметилбензол, деметилирование с хлорангидридом уксусной кислоты

Пентаметилбензол, деметилирование с хлористым алюминием

Процессы деметилирования

Тропин, деметилирование

Фенолокислот гидроксилирование, метилирование, деметилирование

Фенолокислот гидроксилирование, метилирование, деметилирование эфиры

Хинин деметилирование

Экспрессия генов и деметилирование ДНК

деметилирование окисление



© 2025 chem21.info Реклама на сайте