Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альтернативные механизмы КР

    Знание механизмов реакций органических соединений позволяет легче усваивать фактический материал. Однако в рамках данной книги не представлялось возможным, не нанося ущерба ясности и последовательности изложения основных положений, подробно и критически рассматривать все, зачастую многочисленные и противоречивые, точки зрения на механизм протекания той или иной конкретной реакции. В большинстве случаев отдавалось предпочтение какому-либо одному механизму, по мнению автора более обоснованному с альтернативными механизмами читатель может ознакомиться по литературным источникам, рекомендуемым учебными программами. [c.5]


    Случай МЯ < 1 вряд ли осуществим в практике. Действительно, количество газа, которое может физически абсорбироваться химически истощенной жидкостью, незначительно по сравнению с количеством, абсорбированным до достижения химического насыщения (фактически в любом практическом случае). Тем более, ряд процессов химической абсорбции, которые протекают в режиме мгновенной реакции, не вырождаются в процессы физической абсорбции при химическом истощении жидкой фазы, а устанавливается альтернативный механизм химической абсорбции. Примечательными примерами такого поведения являются абсорбция СОз растворами гидроокисей [3] и абсорбция СО2 растворами аминов [4]. [c.106]

    Другим, менее распространенным методом получения цианидов является реакция спиртов с трибутилфосфином в системе тетрахлорид углерода/твердый K N и 18-краун-6 в ацетонитриле при комнатной или более высокой температуре [1607]. Меченый цианид калия в присутствии 18-крауна-6 обменивается с нитрильной группой в ацетонитриле при кипячении за 25 мин. Вероятно, эта реакция не является простым замещением, в работе [1378] предложен альтернативный механизм. [c.122]

    Предложены два альтернативных механизма реакции  [c.369]

    Образование метансульфоновой кислоты может объясняться и альтернативным механизмом, включающим на промежуточной стадии присоединение гидроксила к атому серы и последующую фрагментацию неустойчивого продукта  [c.191]

    Далее нужно учитывать, что недостаточно выбрать механизм, который лучше отвечает опытным данным. Различия в соответствии могут быть весьма незначительными и поэтому объясняются целиком ошибкой эксперимента. К сожалению, если ряд альтернативных механизмов описывает результаты опытов одинаково хорошо, то следует признать, что выбранное выражение просто является одним из уравнений, хорошо соответствующих полученным данным, но не уравнением, отражающим реальную картину. Принимая указанный аргумент, неправильно отказываться от применения самого простого и удобного уравнения с удовлетворительным соответствием. Действительно, когда нет серьезных оснований для выбора более сложного из двух уравнений, всегда необходимо использовать простейшее из них, если оба выражения одинаково хорошо отвечают результатам экспериментов. [c.414]

    Аналогично, для реакций электрофильного замещения в ароматическом ряду также можно ожидать наличия двух альтернативных механизмов. [c.314]

    Альтернативный механизм — комплексообразование с катионом и расщепление углевода происходит в растворе, осколки адсорбируются на гидрирующем катализаторе и гидрируются до низших полиолов [66]. [c.93]

    Предположим теперь один и тот же активированный комплекс (А....ВС....М) и используем (2.5) для нахождения и йд, входящих соответственно в (11.2) и (11.4). Это дает возможность получить формулы для эффективных констант скорости альтернативных механизмов  [c.126]


    Из сравнения выражений (12.2-31) и (12.2-29) видно, что протяженность зоны плавления в червяке с коническим сердечником всегда меньше, чем в червяке с каналом постоянной глубины. Более того, чем больше конусность, тем короче зона плавления, однако существует предельное значение конусности, превышение которого может привести к тому, что ширина твердого слоя будет иметь тенденцию к увеличению, а не к уменьшению (площадь поперечного сечения, разумеется, всегда уменьшается), что может вызвать закупорку винтового канала червяка, увеличение скорости движения пробки и возникновение автоколебаний. Обычно участки червяков с коническим сердечником характеризуют степенью сжатия, т. е. отношением глубины канала в зоне питания к глубине канала в зоне дозирования, хотя из изложенного выше ясно, что зону плавления следует характеризовать именно конусностью червяка, а не степенью сжатия. На рис. 12.16 показано влияние конусности сердечника на форму рассчитанного профиля твердой пробки. Ширина твердой пробки уменьшается, если Л/ф < 1, остается постоянной, если ЛАр = 1, и увеличивается при А > 1. Все эти случаи наблюдались экспериментально. Увеличение ширины твердой пробки означает, что уменьшение глубины канала оказывает большее влияние, чем интенсивность плавления. Такая ситуация часто возникает на участках червяка с коническим сердечником, следующим за зоной питания с постоянной глубиной канала. Таким образом, в начале конического участка X < Ш, и увеличение X не вызывает колебаний производительности и не нарушает механизм плавления с принудительным удалением расплава. Если же плавление начинается на участке червяка с коническим сердечником и Л/г15 > 1, то может оказаться, что устойчивое плавление по указанному механизму не удастся реализовать. В этих условиях плавление может происходить по другому, упоминавшемуся ранее механизму, например за счет диссипативного плавления—смешения, К сожалению, до настоящего времени отсутствует исчерпывающая информация по этим альтернативным механизмам плавления, а теоретические методы, позволяющие предсказать тот или иной механизм плавления в каждом отдельном случае, пока не разработаны. [c.446]

    Альтернативный механизм комплексообразования предполагает иную модель активного центра, в которой лиганд в принципе не может достичь связывающего центра без существенных конформационных изменений в молекуле белка (происходящих, возможно, лишь в переходном состоянии процесса комплексообразования)  [c.30]

    Для анализа экспериментальных данных (распределение продуктов ферментативной деструкции полимера в зависимости от степени полимеризации, или средняя степень полимеризации продуктов гидролиза) используют теоретические модели ферментативной деструкции полимеров — обычно весьма детализированные, но, как правило, содержащие сильные (и неочевидные) допущения, лишающие смысла всю детализацию. К ним относятся допущения об аддитивности показателей сродства индивидуальных сайтов, о постоянстве гидролитического коэффициента независимо от способа связывания субстрата и степени его полимеризации, о постоянстве инкремента свободной энергии активации действия фермента при последовательном заполнении его сайтов и т. д. Несоответствие теоретических данных, рассчитанных с помощью подобных упрощенных моделей, с экспериментальными нередко трактуется как доказательство в пользу существования таких неординарных механизмов, как множественная атака. При этом в работах, как правило, отсутствует критический анализ ограничений модели, и в частности анализ альтернативных механизмов действия фермента без априорного привлечения неординарных механизмов. [c.103]

    На самом же деле плохое связывание субстрата с участком D по сравнению с другими участками активного центра лизоцима вовсе не обязательно должно приводить к деформации соответствующего фрагмента субстрата уже в комплексе Михаэлиса, даже если каталитическое превращение данного субстрата происходит с высокой эффективностью. Альтернативным механизмом превращения субстрата в этом случае является изменение конформации сахаридного остатка не в основном состоянии (комплекс Михаэлиса), а в переходном в результате соответствующей перестройки [c.164]

    Альтернативный механизм образования фаз кристаллографического сдвига - образование кислородных вакансий, их упорядочение и происходящий вследствие этого сдвиг [4, 5].  [c.156]

    Альтернативный механизм действует в том случае, когда углеродный атом, связанный с атомом галогена, имеет в качестве заместителей три алкильные группы, например (СНз)зС—С1. В рассматриваемом примере объемные алкильные заместители препятствуют близкому подходу нуклеофила к электронодефицитному углеродному атому. В таких случаях реакция протекает в две стадии. [c.64]

    Альтернативный механизм для первичных галогенидов (5 2-реакци я) предполагает, что в лимитирующей стадии участвуют и нуклеофил, и алкилгалогенид. Процесс можно пред- [c.224]


    Показано, что расщепление диэтилового эфира в присутствии литийорганического соединения приводит к образованию этилена и этилата лития, а расщепление ТГФ дает енолят ацетальдегида и этилен. Интенсивное изучение механизма разрыва связей простых эфиров показало, что он меняется в зависимости от природы реагирующих соединений и даже для одного и того же эфира возможна реализация альтернативных механизмов. Так, например, для расщепления диэтилового эфира под действием литийорганического соединения постулированы механизмы, включающие и даже а ф -элиминирование  [c.255]

    Основная идея правила Вудварда — Гофмана кажется совершенно очевидной в случав нескольких альтернативных механизмов легче осуществляется тот, в процессе которого достигается максимальное связывание. Это предполагает, что и в активированном комплексе при согласованном процессе с низкой энергией активации достигается максимальное связывание. [c.537]

    В случае альтернативного механизма, при котором хлор непосредственно замещает водород в молекуле, нельзя было предсказать точного результата реакции можно было только предположить, что образование оптически неактивного продукта крайне мало вероятно нет причин ожидать, что атака с тыльной стороны (со стороны, противоположной водороду) будет происходить в такой же степени, как и атака с фронта. (В аналогичных ионных реакциях атака происходит исключительно со стороны, противоположной уходящей группе.) [c.224]

    Стереохимнческие представления играют все большую роль в органической химии, особенно с тех пор как начала развиваться конформационная теория. Однако в области органического гетерогенного катализа стереохи-мические подходы распространялись значительно медленнее. Между тем сочетание привычных каталитических понятий и концепций со стереохимическими представлениями, в первую очередь конформационным анализом, весьма перспективно для понимания тонкого механизма гетерогенно-каталитических реакций. Подтверждением этой точки зрения могут служить отдельные работы, приведенные в ряде обзоров [1—10], где в той или иной мере применен вышеупомянутый подход. Используя этот подход, часть альтернативных механизмов некоторых реакций удалось сразу отбросить, поскольку они не удовлетворяли требованиям стереохимии. Наиболее эффективно стереохимические методы могут быть использованы, и действительно используются вместе с различными экспериментальными приемами. [c.9]

    Механизм цепной неконтролируемой реакции, происшедшей в Севезо, обсуждается ниже. Альтернативный механизм образования диоксина приводится в работах [ attabeni,1978 Hay, 1982]. Имеется в виду пиролиз многочисленных органических соединений, имеющих в своем составе хлор. Такие процессы, например, происходят в установках по сжиганию городского мусора. Эти процессы приводят к различным случаям хронических отравлений, например постоянному загрязнению атмосферы. Случай образования диоксина в таком процессе описан в работе [ oulston,1983] на установке для пиролиза, содержащей около 5 т полихлордифенилов и хлорпроизводных бензола, случился пожар. Анализ воздуха в районе пожара показал, что в пробе содержалось около 3 млн" диоксина. [c.406]

    По существующим представлениям [190] возможны два альтернативных механизма процесса рекомбинации атомов или радикалов. Согласно одному из них, называемому механизмом передачи энергии или ЕТ-механизмом (energy transfer), происходит двухстадийный процесс, в первой стадии которого образуется возбужденная молекула, которая затем, во второй стадии, стабилизируется путем передачи энергии возбуждения третьей частице  [c.115]

    Превращение пантотеновой кислоты в кофермент А проводили с использованием препаратов ферментов из бактериальных источников и из печени крыс [65]. Вначале в результате фосфорилирования образуется 4 -фосфопантотеновая кислота (79), которая в результате конденсации с цистеином дает 4 -фo фoпaнтoтeнoил-L-цистеин (80). Последующее декарбоксилирование до пантетеин-4 -фосфата (73), реакция с аденозинтрифосфатом с образованием дефосфокофермента А (81) и, наконец, селективное фосфорилирование приводит к коферменту А (70) (схема (48) . Маловероятно, что альтернативный механизм [66], включающий начальную конденсацию пантотеновой кислоты с цистеином, имеет какое-либо биологическое значение. [c.612]

    Чтобы устранить недостаток механизма Гамильтона, Дольфин предложил интересный альтернативный механизм [293], согласно которому не образуется промежуточного продукта с разомкнутым кольцом. Этот механизм включает образование активного оксази-ридин-4а,5-флавина, получаемого из флавннгидронероксида ,  [c.421]

Рис. 52 Влияние двух взаимозави-симы.х ингибиторов — борной и н-гексилборной кислот — на скорость реакции гидролиза амидного субстрата, катализируемого а-химотрипсином (а) — без добавления НзВОз, (б) — концентрация НзВОз равна 0,21 М. Пунктирная прямая соответствует альтернативному механизму взанмонезави-симого ингибирования Рис. 52 Влияние <a href="/info/1696521">двух</a> взаимозави-симы.х ингибиторов — борной и н-гексилборной кислот — на <a href="/info/313528">скорость реакции гидролиза</a> <a href="/info/1375981">амидного субстрата</a>, катализируемого а-химотрипсином (а) — без добавления <a href="/info/505089">НзВОз</a>, (б) — концентрация <a href="/info/505089">НзВОз</a> равна 0,21 М. Пунктирная прямая соответствует альтернативному механизму взанмонезави-симого ингибирования
    Сравнивается действие двух или нескольких ферментов на один поли- или олигомерный субстрат и выявляется состав образующихся продуктов (различное распределение моно- или олигомерных продуктов по степени их полимеризации и по относительной концентрации). При этом состав продуктов действия одного из ферментов более характерен для неупорядоченного (многоцепочечного) способа действия по сравнению с действием других ферментов. Этого, как правило, для авторов достаточно, чтобы заключить о частичном проявления одноцепочечного механизма действия в последнем случае и, базируясь на выбранной ими модели, рассчитать степень множественной атаки. Кроме того, практически ни в одной из приведенных нами работ не вводились количественные поправки на возможную повторную атаку ( вторичный гидролиз образующихся продуктов реакции), исходя из кинетических параметров ферментативного гидролиза олигомеров с различной степенью полимеризации. Иначе говоря, авторы, априори принимая только механизм множественной атаки, не делают контрольных расчетов по альтернативным механизмам ферментативного гидролиза полимеров. [c.102]

    Итак, представления о карбокатионном промежуточном соединении (или переходном состоянии) в катализе лизоцимом достаточно обоснованы (в том числе и теоретически, см. [95, 96, 106, 112— 114]). Тем ие менее неясными остаются вопросы о роли остатка Asp 52 в катализе и о дальнейшей судьбе промежуточного карбоксониевого иона в катализе лизоцимом. Возможные гипотезы иа этот счет рассматриваются при обсуждении альтернативных механизмов ферментативного катализа. Наиболее приемлема, по-видимому, гипотеза об образовании промежуточного карбокатиона (который может представлять собой или переходное состояние реакции, или короткоживущее промежуточное соединение) и последующей быстрой рекомбинации его с отрицательно заряженной карбоксильной группой остатка Asp 52. Ковалентный гликозил-фермент (ацилаль) далее атакуется водой или внещним нуклеофильным агентом (акцептором) с образованием соответствующего продукта и возвращением фермента к прежнему активному состоянию. Эта гипотеза даст положительный и определенный ответ на оба поставленных выше вопроса — о роли остатка Asp 52 и дальнейи1ей судьбе карбоксониевого иона в катализе лизоцимом. [c.176]

    Из этих альтернативных механизмов основным является тип И, где атака нуклеофила по карбонильной группе не нуждается в помощи. Этот механизм обычно используется для объяснения тех реакций, в которых либо карбонильная группа высокоэлектрофильна (т. е. X обладает большой электроотрицательностью), либо HY — очень хороший нуклеофил. Там где карбонильная группа — слабый электрофил и HY обладает низкой иуклеофильностью, реакционную способность системы можно повысить или путем протонирования карбонильной группы для увеличения ее электрофильности (тип I) или депротонирования HY или HZ для образования более сильного нуклеофила (тип 1П). Одновременная реализация обоих процессов в растворах невозможна, однако в тех случаях, когда реакция катализируются за счет адсорбции реагентов на поверхности (например, для ферментативных превращений), в молекуле могут присутствовать как группа — донор протонов, так и группа — акцептор протонов, каждая из которых будет независимо катализировать свой процесс. [c.162]

    Общее направление взаимодействия определяется стереохимией ферментативной реакции между UDPG и о-фруктозо-6-фосфатом. Как UDPG, так и сахарозофосфат являются а-глю-козидами, так как суммарно перенос глюкозного фрагмента осуществляется с обращением конфигурации и любой механизм реакции должен объяснить это явление. Для алкилирования существует два возможных альтернативных механизма SnI и Sn2. Зк1-Процесс в живых системах маловероятен, поскольку промежуточно образующиеся карбокатионы обладают высокой энергией и чрезвычайно реакционноспособны, поэтому их реакции трудно контролируются. 8н2-Механизм, который не включает такие высокореакционные интермедиаты, более подходит [c.325]

    В задаче 29, стр. 263, вы предположили ряд стадий, при помощи которых можно осуществить синтез геранилпирофосфата, исходя из изопентенилпирофосфата и диметилал-лилпирофосфата. Основываясь на том, что слабоосновный пирофосфат-аинон является хорошей уходящей группой, вы пришли к выводу, что на одной из стадий образуется карбониевый ион. Можете ли вы предложить вероятный альтернативный механизм, ие рассматривающий в качестве интермедиата свободный карбониевый ион  [c.683]

    Механизм типа Sn2(промежуточный) вызвал ряд критических замечаний (см., например, работы [667, 668] и цитированную литературу). Можно предложить альтернативный механизм, включающий гетеролиз свяэи R3 —X и образование соответствующей ионной пары с последующей определяющей скорость реакции нуклеофильной атакой растворителя. В этом случае обратный распад комплекса на реагенты будет происходить быстрее, чем нуклеофильная атака с образованием продуктов реакции. Так, сольволиз вторичных 1-арилэтилтозилатов АгСН(ОТоз)СНз можно объяснить и в рамках механизма с участием ионной пары, в котором главную роль играет атака нуклеофильным растворителем на ионную пару [667]. В менее нуклеофильных растворителях эта атака определяет скорость реакции, в то время как атака более нуклеофильным растворителем осуществляется очень быстро и скорость реакции зависит от предыдущей стадии ионизации R3 —X. Следует отметить, однако, что в общем случае ионная пара взаимодействует с растворителем неспециф.ично (т. е. не путем ковалентного связывания одной молекулы нуклеофильного растворителя) и, следовательно, механизм Sn2(промежуточный) здесь не реализуется [667]. [c.350]

    В настоящее время определенных путей генерации 1,3-дегидро-бензола нет. Не исключено, что при дегидробромировании (125) возникает (98в) со структурой типа бицикло [3.1.0] гексатриена, но возможны и альтернативные механизмы [117]. Однако по аналогии с генерацией дегидробензола из аминотриазола можно легко получить 1,8-дегидронафталин (102) [118]. [c.609]

    АЛК-синтетазы приведены на схеме (4). Дальнейшие превращения соединения (18) могут осуществляться двумя путями. В первом из них под влиянием двойного электроноакцепторного эффекта карбонильной группы и пиридинового кольца соединение (18) де-карбоксилируется с образованием соединения (19), протонирова-ние которого и последующий гидролиз основания Шиффа (20) дает АЛК (1). Альтернативный механизм заключается в гидролизе комплекса (18) до свободного 1-амино-2-оксоадипата (10), который далее декарбоксилируется без участия ферментов, образуя АЛК (1) (см. схему 4). [c.639]


Смотреть страницы где упоминается термин Альтернативные механизмы КР: [c.85]    [c.390]    [c.160]    [c.89]    [c.130]    [c.171]    [c.245]    [c.126]    [c.255]    [c.400]    [c.351]    [c.85]    [c.299]    [c.305]    [c.72]    [c.342]   
Смотреть главы в:

Прогнозирование и диагностика коррозионного растрескивания магистральных трубопроводов -> Альтернативные механизмы КР

Прогнозирование коррозионномеханических разрушений магистральных трубопроводов -> Альтернативные механизмы КР




ПОИСК







© 2024 chem21.info Реклама на сайте