Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические методы исследования волокон

    Направления технического развития производства красителей также определяются возрастающими требованиями отраслей промышленности, потребляющих красящие вещества, в первую очередь текстильной промышленности. Здесь прежде всего следует отметить стремление к повышению устойчивости (прочности) окрасок к физико-химическим воздействиям (свет, стирка и др.) и тенденции к максимальной интенсификации и упрощению процессов крашения. К работам, проведенным в последние годы в этом направлении, можно отнести создание прочных металлсодержащих азокрасителей открытие (в 1956 г.) красителей, вступающих в процессе крашения в химическую (ковалентную) связь с целлюлозой и потому очень прочных к стирке, трению и другим воздействиям разработку метода получения из неокрашенных соединений фталоцианино-вых красителей на волокне и другие исследования. [c.616]


    Исследование фибриллярных белков типа шелка и шерсти представляет крайне трудную задачу, так как они нерастворимы в воде. Шелк состоит из длинных фиброиновых нитей, связанных с другим белком — серицином. Имеются различные данные о молекулярном весе фиброина, однако обычно его принимают равным 84 ООО [108]. Много работ было посвящено выяснению аминокислотного состава фиброина, причем было установлено, что он состоит более чем на 50% из остатков глицина и аланина. На отдельных фракциях фиброина было проведено селективное расщепление с последующим анализом концевых групп. Применяя различные физико-химические методы, такие, как рентгеноструктурный анализ, инфракрасную и ультрафиолетовую спектроскопию, пытались сопоставить данные, полученные при исследовании различных фракций фиброина. Были сделаны также попытки расположить аминокислотные остатки таким образом, чтобы объяснить механические и химические свойства волокна [108]. [c.417]

    Особый интерес вызывает изотактический полистирол (с регулярным строением полимерной цепи), который отличается рядом преимуществ по сравнению с обычным полистиролом. К числу таких преимуществ относится, например, возможность использования его для получения волокна и для других целей. Поэтому неуклонно растет число работ, посвященных разработке новых методов получения и переработки полистирола и его сополимеров, исследованию его физико-химических, механических и других свойств. [c.269]

    Возможность рационального использования целлюлозы в различных отраслях народного хозяйства для получения материалов, обладающих требуемыми свойствами, непосредственно зависит от выяснения основных вопросов строения целлюлозы и от подробного изучения свойств целлюлозных материалов. Это относится в первую очередь к тем отраслям промышленности, которые основаны на химической переработке целлюлозы (приготовление лаков, пленок, пластических масс,, искусственного волокна, бездымного пороха и т. д.), а также к текстильной и бумажной промышленности. Разные представления о строении целлюлозы приводят к разным выводам об оптимальных условиях проведения процессов ее химической переработки и о методах, которые надо применять для изменения в желаемом направлении физико-химических и механических свойств получаемых продуктов. Поэтому, естественно, вопросам строения целлюлозы посвящались и посвящаются многочисленные исследования. [c.11]


    Исследование взаимодействия активных добавок с поверхностью стеклянных волокон. Механические и диэлектрические свойства стеклопластиков при выдержке в различных активных средах значительно зависят от физико-химических явлений, протекающих на границе раздела стекло — смола. Естественно поэтому повышение смачивающей способности связующего по отношению к стеклянному волокну и увеличение прочности адгезионного сцепления улучшают стабильность свойств стеклопластиков в условиях повышенной влажности. Смачивающую способность связующего ФН с различным количеством активной добавки АМ-2 оценивали по величине краевого угла смачивания, который определялся на образцах полированного стекла методом сидячей капли. Наряду с определением угла смачивания измерялась высота капиллярного поднятия связующего по волокну. [c.32]

    Весь этот контроль на предприятиях химических волокон проводят центральные заводские лаборатории (ЦЗЛ) и лаборатории основных производств, а многие параметры технологического процесса проверяются и регистрируются соответствующими приборами автоматически. При этом ЦЗЛ часто проводят исследования для изучения возможности интенсификации отдельных стадий технологического процесса, улучшения физико-механических свойств волокна, усовершенствования и создания новых методов анализа, контроля. Работой ЦЗЛ непосредственно руководит главный инженер предприятия. [c.105]

    Прежде чем из полимеров получили синтетическое волокно, в 1921 г. Г. Штаудингером было установлено макромо-лекулярное строение таких высокомолекулярных природных веществ, как каучук и другие коллоидные вещества, а в 1926 г. доказано существование макромолекул, в состав которых входят тысячи атомов. Исследование строения макромолекул стало возможным благодаря разработке в 1910—1920 гг. новых физических и физико-химических методов (ультрацентрифугирование, осмометрия, дифракция рентгеновских лучей и вискозиметрия) [174, с. 3]. В 1929 г. У. Карозерс начал фундаментальные исследования циклизации и полимеризации органических молекул. В 1932 г. Карозерс и Хилл обнаружили, что из расплавленных полиэфиров, которые путем молекулярной перегонки переводятся в суперполиэфир (термин Карозерса), можно вытянуть нити, которые, затвердевая при охлаждении, превращаются в бесконечные волокна. Однако лишь спустя несколько лет было налажено промышленное производство синтетического волокна из полиамида. Со временем искусственные ткани приобретали все большее значение, и производство их стремительно возрастало [174, с. 6, 9]. [c.212]

    В связи с потребностями промышленности в создании полимерных материалов (каучуки, пластики, волокна) со все расши-ряюшимся комплексом полезных свойств наука о высокомолекулярных соединениях последние полтора — два десятилетия развивается во все ускоряющемся темпе. Уже. на раннем своем этапе это развитие привело к отчетливому пониманию того, что физико-механические свойства полимерных веществ в массе (или, как принято говорить, в блоке), в частности их высокая эластичность, связаны со строением составляющих их цепных молекул (макромолекул). С этого времени началась интенсивная разработка физических методов исследования структуры макромолекул. Наряду с традиционными исследованиями свойств полимеров в блоке началось накопление научного материала, относящегося к свойствам отдельных макромолекул полимеров различного химического строения. [c.11]


Смотреть страницы где упоминается термин Физико-химические методы исследования волокон: [c.343]    [c.29]    [c.143]   
Смотреть главы в:

Физико-химические основы технологии химических волокон -> Физико-химические методы исследования волокон


Физико-химические основы технологии химических волокон (1972) -- [ c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Методы физико-химические

Физико-химические методы исследования

Химические и физико-химические методы



© 2024 chem21.info Реклама на сайте