Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки соединения с другими белками

    БИУРЕТОВАЯ РЕАКЦИЯ — цветная реакция, которую дают с солями меди в щелочной среде биурет H2N ONH ONH2, амиды и имиды кислот, полипептиды, белки и другие соединения, содержащие группировки —СО—NH—, Б. р. — цветная реакция на белок — лежит в основе его количественного колориметрического определения. Если к щелочному раствору белка прибавить раствор uSO , появляется фиолетовое окрашивание. Чувствитель-1юсть Б. р. невысока. [c.45]


    Содержание азота в нефтях значительно ниже, чем серы. Обычно оно колеблется от сотых до десятых долей процента и редко превышает 0,5—0,6%. Вероятно, низкое содержание в нефтях азота и его носителей — азоторганических соединений — объясняется тем обстоятельством, что единственным источником его попадания в нефть является нефтематеринское органическое вещество, которое в процессе своей геохимической истории на пути превращения в нефть медленно, но неуклонно обедняется азотом, Азоторганические соединения вполне справедливо поэтому рассматривать как остаточные или промежуточные соединения в длинной цепи геохимических превращений в нефть таких азотсодержащих органических веществ растительного и животного происхождения, как белки, алкалоиды и другие азотистые соединения. [c.349]

    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]


    ПРОТЕИДЫ — соединения биологического происхождения, сложные белки, представляющие собой соединения белков с другими веществ.з 1и, например, с углеводами, нуклеиновыми кислотами и др. [c.205]

    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Если соединение содержит два или более хиральных центров, оно может иметь 2 стереоизомеров, где и-число хиральных центров. Глицин не содержит асимметрического атома углерода (см. 5-3), и поэтому у него нет стереоизомеров. Все другие аминокислоты, обычно встречающиеся в белках, содержат по одному асимметрическому атому углерода. Исключение составляют треонин и изолейцин, каждый из которых имеет по два таких атома и 2" = = 2 = 4 стереоизомера. Однако в состав белков входит только по одному из этих четырех возможных изомеров той и другой аминокислоты. [c.111]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]

    Для биосинтеза белков и других сложных органических соединений требуется затрата большого количества энергии. Основными источниками энергии в растениях, как известно, являются дыхание (окислительное фосфорилирование) и фотосинтез (фотосинтетическое фосфорилирование). Между интенсивностью синтеза белков и Интенсивностью дыхания существует тесная связь в молодых органах и тканях, характеризующихся высокой скоростью биосинтеза белков, интенсивность дыхания всегда была выше, чем в более старых органах. Без доступа кислорода или -при подавлении дыхания лод действием ингибиторов синтез белков прекращался. Фотосинтез также оказывал влияние на биосинтез белков и при повышении интенсивности фотосинтеза синтез белков -в растениях усиливался. При продолжительном нахождении растений в темноте в искусственных условиях, даже когда растения снабжаются извне питательными веществами (сахарами и нитратами), распад белков преобладает над их синтезом. [c.288]

    До настоящего времени ни один из глюкопротеидов не получен в чистом кристаллическом виде. Некоторые глюкопротеиды , вероятно, представляют собой смесь различных соединений, другие же образуются из белков и углеводов в процессе их выделения, и их следует считать артефактами. Устойчивость глюкопротеидов по отношению к действию денатурирующих агентов часто используют для отделения их от белков. При этом белки осаждают путем нагревания растворов, а затем из фильтрата осаждают глюкопротеиды путем высаливания или при подкислении. [c.233]

    Антитела представляют собой олигомерные белки. К настоящему времени известно около десяти групп различных антител, среди которых у человека наиболее часто встречаются группы 1 С, IgA, 1 М, IgD и IgE. Структурную основу иммуноглобулинов составляют четыре полипептидные цепи, соединенные друг с другом с помощью дисульфидных мостиков. Две тяжелые цепи цепи Н) имеют молекулярную массу около 50 ООО и содержат от 450 до 700 аминокислотных остатков каждая, а две легкие цепи цепи Ь) включают около 200 аминокислотных остатков каждая и имеют молекулярную массу порядка 25 ООО (рис. 18.1). Такую структуру обычно причисляют к мономерам. По различиям в первичной структуре легкие цепи делятся на два типа (х и Л), а тяжелые — на пять типов (табл. 18.1). Именно в зависимости от типа тяжелой цепи, входящей в [c.485]


    Применение ультрацентрифуг, в которых ускорение в миллион раз превосходит ускорение силы тяжести, дало возможность изучить седиментацию белков и других высокомолекулярных соединений, а также вирусов. [c.319]

    Ионы металлов в белках и других природных соединениях [c.342]

    Стереохимические отнощения в ряду природных аминокислот, входящих в состав белков, в настоящее время достаточно ясны. В их исследовании можно различить две стадии — во-первых, установление стерических отношений между аминокислотами и, во-вторых, установление абсолютной конфигурации. Решающую роль в изучении обеих проблем сыграло химическое превращение различных соединений друг в друга -без затрагивания асимметрического атома углерода, иными словами, непосредственное установление конфигурационного соответствия химическим путем. [c.365]

    В живых организмах протекает гидролиз полисахаридов, белков и других органических соединений. [c.86]

    Вода вызывает набухание коллоидов, она связывается с белком и другими органическими соединениями, а также с ионами, входящими в состав клеток и тканей. Вместе с углекислым газом вода в процессе фотосинтеза вовлекается в образование органических веществ и, таким образом, служит материалом для создания живой материи на Земле. [c.46]

    Разделение сильно различающихся по молекулярной массе веществ (очень важный для химии белков прием обессоливания , т. е. удаления веществ, используемых при выделении белков и других высокомолекулярных водорастворимых соединений) в основном относится к очистке или выделению растворимых в воде природных соединений. [c.79]

    В некоторых ферментах, например в тех, которые катализируют гидролитическое разложение белков (пепсин в желудочном соке), активный центр не содержит инородных соединений, а представляет собой просто совокупность отдельных частей длинной цепеобразной молекулы белка, сближенных друг с другом в результате изгиба сложной цепи. Следовательно, активный центр фермента может возникнуть как результат определенной деформации белковой частицы другими словами, геометрические особенности полипептидной цепочки, из которой белки и состоят, имеют больщое значение для проявления каталитических свойств (см. III, гл. 5). [c.356]

    Собственно, этим определением можно было бы и завершить выяснение смысла понятия самоорганизация , если бы был совершенно ясен вопрос о том, как оценивать уровни упорядоченности материальных систем, т. е. высоту их организации. Как было уже сказано, в биологии применительно к живым системам этот вопрос представляется более ясным, чем в химии, хотя при этом нельзя не вспомнить замечания Ч. Дарвина о том, что почти безнадежной является попытка сравнивать высоту организации особей разных типов, например пчелы и каракатицы. Еще более безнадежными оказались попытки биохимиков найти мерило высоты организации химических соединений в их отношениях к белкам и другим биополимерам путем построения гипотетической лестницы, ведущей вниз вплоть до метана. [c.192]

    Сероводород — бесцветный газ с неприятным запахом (тухлых яиц). I л его при нормальных условиях весит 1,54 г. Образуется при разложении органических веществ без доступа воздуха, за счет серы, входящей в состав белков и других органических соединений (в частности, выделяется при порче яиц). Сероводород ядовит. Вдыхание значительных количеств его опасно (может вызвать смерть). [c.503]

    Четвертичная — соединенные друг с другом макромолекулы белков. Образуют комплекс [c.261]

    Как уже указывалось в главе VI, стабилизация дисперсной системь с помощью структурированных механически прочных оболочек универсальна и придает дисперсной системе практически безграничную устойчивость. Тип образующейся концентрированной эмульсии зависит главным образом от природы эмульгатора. Выбор эмульгатора определяется следующим правилом эмульсии первого типа м/в) стабилизуются растворимыми в воде высокомолекулярными соединениями, например белками или воднорастворимыми гидрофильными мылами (оле-атом натрия и вообще мылами щелочных металлов). Эмульсии второго типа в/м) стабилизуются высокомолекулярными соединениями, растворимыми в углеводородах, например полиизобутиленом, олеофильными смолами и мылами с поливалентными катионами (олеатом кальция и др.), не растворимыми в воде, но растворимыми в углеводородах. Следовательно, эмульгатор должен иметь большее сродство с той жидкостью, которая является дисперсионной средой. Воднорастворимые мыла и воднорастворимые высокополимеры стабилизуют эмульсин масла в воде, в которых вода — дисперсионная среда. Каучук и другие высокополимеры, растворимые в углеводородах, стабилизуют эмульсии, в которых дисперсионная среда — масло (углеводородная жидкость). [c.143]

    Сейчас ситуация значительно изменилась. Для подавляющего большинства соединений, как неорганических, так и органических (за исключением сложных биологи- еских объектов — белков и других подобных им соединений), анализ кристаллической структуры стал в большой степени стандартизованной задачей. Это произошло п результате автоматизации дифрактометрического эксперимента, широкого использования ЭВМ в роли управляющих и решающих устройств, а главное — благодаря разработке общих методик решения структурных за- [c.3]

    Понижение защитных свойств белков и других гидрофильных соединений в крови может привести к выпадению солей мочевой кислоты (при подагре), к образованию камней в точках, печени, протоках пищеварительных желез и т. п. [c.187]

    Сера, селен, теллур и их соединения. При обычных условиях сера, селен и теллур - твердые вещества (см. табл. 12.6). В природе существуют залежи чистой самородной серы, а также сульфидные руды (Ре82, 2п8, РЬ8 и др.) и сульфаты. Соединения серы входят в состав горючих ископаемых углей, нефти и природного газа. В морской воде имеются сульфаты. Самородную серу извлекают под действием горячей воды и сжатого воздуха. Кроме того, серу и ее соединения получают как попутные продукты в цветной металлургии и при переработке природного газа. Селен и теллур в природе встречается в виде селенидов и теллуридов металлов. Их извлекают в основном из анодных шлаков, образующихся при рафинировании меди. Сера существует в нескольких формах. При температурах до 95,5°С устойчива ромбическая сера (а-форма) лимонно-желтого цвета, при температурах выше 95,5°С - моноклинная сера ((3-форма) более темного цвета. Та и другая модификации имеют геометрическую структуру восьмичленных гофрированных колец (8в). Селен и теллур в твердом состоянии образуют зигзагообразные цепи. Сера применяется в основном для получения серной кислоты, а также для вулканизации резины, при производстве моющих средств, лекарственных препаратов, инсектицидов, фунгицидов и пороха. Сера входит в состав белков. Применение селена и теллура основано на увеличении их электрической проводимости под воздействием света (фотопроводимость). Соответственно селен используется в фотоэлементах, фотоэкспаномет-рах и ксероксах. В очень небольших количествах он необходим организму человека. Однако, при высоких концентрациях (ПДК 2 мг/м ) селен ядовит. Токсичны и его соединения (ПДК 0,1 - 0,4 мг/м ). Еще более токсичны теллур (ПДК 0,01 мг/м ) и его соединения. [c.414]

    На фиг. 30 схема / изображает молекулу нативного белка, имеющую только внутримолекулярные солевые мостики, схема II представляет молекулы денатурированных белков, соединенные друг с другом мсжмолекулярными солевыми мостиками. На этих схемах образование структур, протекающее фактически в трех измерениях, представлено на плоскости, т. е. в двух измерениях. Гипотеза, приписывающая свертывание белков образованию солевых мостиков между ионными группами белков, принимается, однако, далеко не всеми исследователями. Некоторые из них считают, что нерастворимость денатурированных белков связана с пространственным перераспределением полярных и неполярных групп, которое выражается в переносе неполярных, гидрофобных групп на поверхность молекулы [134, 175, 176]. [c.155]

    Зависимость между обменной емкостью ионитов по ионам значительных размеров и внутримолекулярной пористостью ионитов использована в методе ионитовых сит, при помощи которого можно разделять ионы одного знака заряда, отличающиеся, одпако, своими размерами. Этот метод прежде всего был использован для отделения ионов мета-лов от крупных ионов органических соединений, например, белков и других полиэлектролитов. Для этой цели были применены слабонабухающие катиониты, обладающие ничтожной набухаемостью. Они сорбируют значительное количество ионов металлов и практически не сорбируют белки и другие ионы высокомолекулярных соединений. Процесс отделения белков от ионов металлов сводится к фильтрованию раствора через ионит. Сквозь иоиитовые сита проходят большие ионы, в то время как ионы небольших размеров сорбируются ионитом (обмениваются на другие ионы). Для полной деминерализации растворов полиэлектролитов в качестве ионитовых сит используют слабонабухающие сульфосмолы в Н-форме. Раствор полиэлектролита после такого рода фильтрования может быть нейтрализован анионитом в ОН-форме. [c.224]

    Липиды — это амфифильные соединения они образуют мицеллы, если содержат по одной жирнокислотной цепи, и двойные слои или бислойные пузырьки, если таких цепей две. Свойства и состав двух поверхностей бислоя не обязательно одинаковы. Природные мембраны помимо липидов содержат большое количество белков. Периферические белки легко экстрагируются из мембраны, в то время как интегральные мембранные белки прочно связаны с ней, вероятно, с помощью гидрофобного участка пептидной цепи. Некоторые интегральные цепи локализуются только на одной поверхности мембраны, другие пронизывают ее насквозь. В липидных бислоях происходят фазовые переходы между состояниями, которые условно можно считать твердым и жидким. В природных мембранах тоже наблюдаются аналогичные переходы, а также латеральное фазовое разделение. От других биологических тpyктyi) мембраны отличает то, что они являются динамическими системами. В них происходит довольно быстрое латеральное перемещение белков и липидов и вращение различных компонентов. Однако перескок компонентов с одной поверхности на другую происходит весьма редко. [c.235]

Рис. 6-14. Пять способов ассоциации мембранных белков с липидным би слоем. Трансмембранные белки пронизывают бислой в виде одиночной а-спирали (1) или нескольких а-спиралей (2). Некоторые из таких белков (1 и 2) имеют присоединенную ковалентно цепь жирной кислоты, погруженную в цитоплазматический монослой (1). Другие мембранные белки ассоциируют с би слоем только за счет ковалентно присоединенного к ним липида - либо цепи жирной кислоты, погруженной в цитоплазматический монослой (3), либо, гораздо реже, через фосфолипид фосфатидилинозитол, погруженный во внешний монослой и соединенный с белком через олигосахарид (4). Наконец, многие бедки ассоциируют с мембраной только благодаря нековалентным взаимодействиям с другими мембранными белками (5). Детали обсуждаются в гл 8 Рис. 6-14. Пять <a href="/info/1558165">способов ассоциации</a> <a href="/info/101039">мембранных белков</a> с липидным би слоем. <a href="/info/166982">Трансмембранные белки</a> пронизывают бислой в виде одиночной а-спирали (1) или нескольких а-спиралей (2). Некоторые из <a href="/info/1459146">таких белков</a> (1 и 2) имеют присоединенную ковалентно <a href="/info/99570">цепь жирной кислоты</a>, погруженную в цитоплазматический монослой (1). Другие <a href="/info/101039">мембранные белки</a> ассоциируют с би слоем только за счет ковалентно присоединенного к ним липида - либо <a href="/info/99570">цепи жирной кислоты</a>, погруженной в цитоплазматический монослой (3), либо, гораздо реже, <a href="/info/1413834">через фосфолипид</a> фосфатидилинозитол, погруженный во внешний монослой и соединенный с <a href="/info/1410132">белком через</a> олигосахарид (4). Наконец, многие <a href="/info/138452">бедки</a> ассоциируют с мембраной только благодаря <a href="/info/1421503">нековалентным взаимодействиям</a> с другими <a href="/info/101039">мембранными белками</a> (5). Детали обсуждаются в гл 8
    Белки - это регулярно построенные сополимеры, состоящие из аминокислотньгх звеньев, чередующихся в порядке, определенном так называемым биологическим кодом , и соединенных друг с другом амидной (пептидной) связью  [c.337]

    В современных мощных ультрацентрифугах оседают пе только кол.чоидные частицы гидрофобных коллоидов, но и молекулы белков и других высокомолекулярных соединений. Помимо очистки, метод ультрацентрифугирования широко применяется в настоящее время для определения среднего радиуса коллоидных частиц, а также для вычисления молекулярной массы высокомолекулярных соединений. Практически все выдающиеся достижения молекулярной биологии обязаны, этому методу. Следует отметить, что работа с ультрацентрифугой очень сложна и кропотлива, так как требует тщательного учета влияния многих побочных факторов. [c.294]

    Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, в111зывая образование характерных вздутий — клубеньков , почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. [c.441]

    БЕЛКИ (протеины) — высоксг-.-оле-кулярные природные соединения, являющиеся продуктами поликонденсации сотен и даже тысяч молекул а-амино-кислот. Б.— важнейшая составная часть всех живых организмов. В молекулах Б. остатки -аминокислот, соединенные друг с другом пептидными связями (—СО—NH—), образуют длинные цепи  [c.39]

    Поэтому было предложено различать пенообразователи по их структурирующему действию. К первой группе относятся вещества с низкой молекулярной массой (спирты, кислоты, амины, фенолы и др.), в растворах которых структурообразование практически отсутствует, а междупленочная жедкость быстро истекает. Вторую группу составляют мыла, синтетические коллоидные поверхностно-активные вещества, белки и другие водорастворимые высокомолекулярные соединения. Они образуют пены, в которых к определенному моменту времени резко замедляется истечение меж-дупленочной жидкости. Возникающий в таких системах структурный каркас обеспечивает устойчивость пен. [c.194]

    Природные высокомолекулярные соединения. Обширную и исключительно важную группу природных высокомолекулярных соединений (биополимеров) составляют белки. Белковые макромолекулы построены из остатков аминокислот, соединенных друг с другом пептидными (кетоимидными) связями —СО—ЫН—. В цепь белковой молекулы входят аминокислотные остатки, содержащие карбоксильные груп- [c.196]

    Благодаря разработке целого ряда новых методов и подходов к решению структурных задач, основанных на широком применении ЭВМ и автоматизации трудоемкого дифракционного эксперимента, изучение кристаллической структуры большинства соединений (за исключением сложных биологических объектов — белков и других подобных им соединений) значительно ускорилось и упростилось. Неспециалисту в области кристаллографии войти в курс дела стало гораздо легче достаточно ознакомиться с общими понятиями и номенклатурой симметрийной кристаллографии, основными положениями и формулами теории структурного анали- [c.3]

    Белки в питательном рационе вполне югyт быть заменены аминокислотами. Оказалось также, что часть необходимых аминокислот животные могут вырабатывать сами из других азотосодержащих органических соединений. Другую часть аминокислот организм синтезировать не в состоянии, они должны поступать в готовом виде, в составе белков пищи. Такие аминокислоты получили название незаменимых. К ним относятся лизин, триптофан, фенилаланин, валин, метионин, треонин, лейцин, изолейцин, гистидин, аргинин. Белковая пища должна покрывать не только общую потребность в аминокислотах, но и содержать необходимые количества незаменимых аминокислот. При недостаточном поступлении этих аминокислот нормальное существование организма нарушается. Так, например, белок кукурузы зеин не содержит лизина и почти не содержит триптофана. В опытах с животными, которые получали с пищей один только этот белок, наблюдалась, несмотря на обильное кормление, потеря веса. Отсутствие в пище триптофана может быть причиной тяжелого заболевания глаз — катаракты. [c.332]

    Однако в связи с малой весовой концентрацией (менее 1,0% и большим молекулярным весом частиц коллоидов их количество в растворе настолько, мало, что осмотическое давлегие в растворах коллоидов очень низкое. Осмотическое давление в растворах белков и других высокомолекулярных соединений,концентрация которых достигает 10—12% и более, значительнее и оказывает существенное влияние на ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико, составляя в норме всего около 0,04 атм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,7 атм. Осмо- [c.192]

    Осмотическое давление в растворах собственно коллоидов и полимеров, как и в истинных растворах, пропорционально их концентрации. Однако в связи с малой весовой концентрацией (менее 1,0%) коллоидов количество частиц в растворе настолько мало, что осмотической давление в растворах собственно коллоидов очень низкое. Осмотическое давление в растворах белков и других рысокомолекулярных соединений, концентрация которых достигает 10—12% и более, значительнее и оказывает существенное влияние иа ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико. составляя в норме всего около 0,04 агм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,7—8,1 атм. Осмотическое давление в растворах высокомолекулярных веществ в значительной степени зависит от температуры и pH. [c.223]

    Азот и некоторые его соединения. Азот входит в состав белков и других органических соединений, селитр (например, чилийской NaNOa), многих природных и искусственно получаемых соединений. В свободном состоянии (N2) содержится в атмосфере (75,5 вес.%). Энергия связи N=N очень велика (225 ккал моль), поэтому молекулы N2 весьма пассивны в обычных условиях. Как относительно инертный газ, обладающий довольно высокой теплопроводностью, он применяется для наполнения мощных осветительных ламп. Обычные осветительные лампы наполняются смесью 86% Аг и 14% Nj. При повышенной температуре азот становится активным и соединяется с металлами, образуя нитриды МёзЫг, BagNj, AIN и др. О нитридах переходных металлов см. гл. ХП. [c.300]

    С помощью нингидрина детектгруют пятна аминои, аминокислот, белков и других соединений. [c.277]


Смотреть страницы где упоминается термин Белки соединения с другими белками: [c.332]    [c.499]    [c.416]    [c.303]    [c.165]    [c.136]    [c.156]    [c.181]   
Химия и биология белков (1953) -- [ c.85 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы металлов в белках и других природных соединениях



© 2025 chem21.info Реклама на сайте