Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклопластики механические свойства

Таблица 1У-6 Сравнительные физико-механические свойства стеклопластика на ненасыщенных полиэфирных смолах марок ПН Таблица 1У-6 Сравнительные <a href="/info/1293593">физико-механические свойства стеклопластика</a> на <a href="/info/555793">ненасыщенных полиэфирных смолах</a> марок ПН

Таблица XI. 9 Физико-механические свойства полиэфирных стеклопластиков Таблица XI. 9 <a href="/info/129852">Физико-механические свойства</a> полиэфирных стеклопластиков
    Механические свойства пластмасс с наполнителем в значительной степени зависят от свойств и количества наполнителя. Для некоторых из них (текстолит, стеклопластики) особенно важна ориентация волокон или ело-ев бумаги (ткани), составляющих наполнитель. Но даже и при неблагоприятном направлении разрушающих нагрузок пластмассы с наполнителями обнаруживают высокую прочность в условиях криогенных температур. [c.155]

Таблица 111.40. Механические свойства ненапряженного и напряженного полиэфирного стеклопластика (25% прочности) в агрессивных средах Таблица 111.40. <a href="/info/4351">Механические свойства</a> ненапряженного и <a href="/info/935092">напряженного полиэфирного</a> стеклопластика (25% прочности) в агрессивных средах
    Ненасыщенные полиэфирные смолы, представляющие собой растворы ненасыщенных полиэфиров в мономерах, способных к сополимеризации с этими полиэфирами, характеризуются высокой теплостойкостью (выше 150—170 °С), хорошими электроизоляционными и механическими свойствами, стойкостью к воде, кислотам, бензину и маслам. Они используются в качестве связующих холодного и горячего отверждения при изготовлении стеклопластиков (стеклошифер и др.), в качестве основы для лаков, клеев, пластобетонов и т. д. [c.74]

    Механические свойства армированных пластиков зависят главным образом от типа, количества и ориентации армирующего материала, в то время как химическая стойкость их определяется типом и количеством связующего. Стеклопластики, предназначенные для работы в агрессивных средах, содержат большое количество связующего и армируются [c.224]

    Контроль за качеством изготовляемого оборудования должен включать проверку исходных материалов, испытание образцов стеклопластика на физико-механические свойства, проверку размеров изделий, качества сборки и состояния поверхности. Кроме того, оборудование, предназначенное для работы с жидкими веществами, должно быть испытано на герметичность. Оборудование, работающее под давлением, подвергается гидравлическим испытаниям, а оборудование, работающее под вакуумом — гидростатическим и вакуумным испытаниям. Все вращающиеся детали, например ротор вентиляторов и воздуходувок, должны быть тщательно сбалансированы и испытаны в течение не менее 15 мин при скорости, превышающей максимальную рабочую на 20%. При этих испытаниях в оборудовании создают статическое давление и отмечают степень изгиба изделия [273]. [c.225]


    В большинстве случаев перед нанесением связующего стараются удалить замасливатель путем термической обработки ткани или при помощи растворителей [14, 15, 27, 30]. Однако стеклянное волокно, лишенное замасливателя, не вполне удовлетворяет предъявляемым к нему требованиям. Б условиях повышенной влажности механические свойства стеклопластиков, изготовленных из такого волокна, в значительной степени ухудшаются. Дело в том, что даже химические связи, возникшие между стеклянным волокном и связующим, не всегда могут обеспечить достаточную стабильность свойств стеклопластиков. Нанример, между эпоксидной смолой и стеклом может осуществляться химическое взаимодействие за счет реакции эпоксидных групп с группами [c.330]

    В табл. XI.9 приведены некоторые данные о физико-механических свойствах полиэфирных стеклопластиков. [c.729]

    Комбинация ненасыщенных полиэфиров со стеклотканями или стекловолокном приводит к стеклопластикам с уникальными механическими свойствами. Эти стеклопластики исполь- [c.295]

    Механические свойства полиэфирной смолы, стеклянных волокон н стеклопластика на их основе [c.181]

    Поскольку у стеклотекстолитов отношение продольных и поперечных слоев (в направлении основы и утка) составляет обычно 3 2, то поэтому их упругие свойства и прочность будут различными при растяжении под углом О и 90° (у равнопрочных стеклофанер из ориентированных стеклопластиков механические свойства под углом О и 90° практически одинаковы). [c.282]

    Проектирование изделий из стеклопластиков почти не отличается от проектирования изделий из металлов. Следует только учитывать повышенную, по сравнению с металлом, прочность на растяжение и сжатие и пониженную прочность на изгиб. Для преодоления последнего недостатка в местах повышенных нагрузок необходимо предусматривать упрочнение материала за счет увеличения толщины или установки ребер жесткости. Использование металла или древесины для повышения жесткости не рекомендуется в виду того, что различие в механических свойствах этих материалов и стеклопластиков может привести к появлению сильно напряженных мест и срезывающих усилий. Кроме того, различия коэффициентов термического расширения и появление продуктов коррозии металлов могут вызвать напряжения, достаточные для разрушения стеклопластика. [c.225]

    После отверждения получаем прозрачную смолу, неплавкую и нерастворимую, с высокими механическими свойствами. Эти свойства могу быть улучшены различными наполнителями (стеклопластики) (табл. 137). [c.506]

    Механические свойства полимерных материалов, армированных различными волокнами, главным образом стеклопластиков, в последнее время являются предметом многочисленных исследований. Многие вопросы этой весьма сложной и специфической проблемы рассмотрены в монографиях и сборниках [1 — 11]. Установлено влияние на прочностные свойства стеклопластиков таких факторов, как механические характеристики компонентов, соотношение их модулей, диаметра и длины волокон, их дозировки, структуры ткани, технологических параметров производства, режимов отверждения и многих других. Мы не будем касаться этих проблем, а рассмотрим только один вопрос — адгезию связующего к волокну. [c.326]

    В стеклопластиках стеклянный наполнитель является упрочняющим элементом и воспринимает основные нагрузки при работе изделия. От сочетания связующего и наполнителя, а также способа изготовления изделий из стеклопластиков (контактное формование, прессование, намотка и т. д.) зависят физико-механические свойства стеклопластиков. Основные особенности механических и деформационных свойств стеклопластиков — анизотропия и ползучесть. [c.199]

    Приведем результаты испытаний на устойчивость стержней прямоугольного поперечного сечения 1x2 см из стеклопластика параллельно-диагональной схемы армирования. Испытывали стержни, вырезанные вдоль основы, при различных условиях закрепления (н- = 1 0,7 0,5) Механические свойства стеклопластика с соотношением слоев 1 1 при сжатии вдоль основы следующие предел прочности Оп = МПа модуль упругости Е = = 12 ГПа коэффициент Пуассона н- = 0,35 модуль сдвига G = = 3 ГПа. [c.186]

    Физико-механические свойства некоторых типов стеклопластиков на основе фснольнык смол и их модификаций приведены в табл. 47. [c.402]

    Подобные вещества могут образовать зону, показатели механических свойств в которой оказываются низкими в результате резко ухудшается адгезионная прочность. Поэтому удаление подобных слабых слоев — один из эффективных способов повышения адгезионной прочности [148]. Следует упомянуть о таких операциях, как удаление замасливателей с поверхности стеклянного волокна при производстве стеклопластиков и очистка поверхности металлов перед склеиванием и нанесением покрытий. В этой связи напомним также о влиянии авиважных препаратов на прочность связи в резинотканевых системах. Считают, что повышение адгезии к полиэтилену после обработки его поверхности пламенем, коронным разрядом или окислителями обусловлено не только появлением на поверхности активных функциональных групп, но и удалением различных загрязнений, создающих ослабленную зону [110, 132, 148]. [c.370]


    Существенный интерес представляет изменение структуры поли- мера под влиянием поверхности наполнителя в процессе отверждения [ПО]. Поверхность наполнителя, в частности поверхность стеклянного волокна, модифицированного различными аппретами, влияет как на скорость, так и на глубину отверждения, что, в свою очередь, влияет на упругие свойства и напряженное состояние связующего вокруг волокна. Это приводит к изменению механических свойств стеклопластика. Скорость отверждения чистой кремнийор-ганической смолы, например, значительно выше, чем скорость ее отверждения в присутствии отожженного волокна. Вблизи волокна связующее отверждается гораздо медленнее, причем радиус ингибирующего влияния волокна достаточно велик. Низкая прочность стеклопластика в этих случаях является следствием низкой степени отверждения связующего вокруг волокна и напряжений, возникающих в результате различия в скоростях отверждения по объему связующего. Ингибирующее влияние волокон на отверждение [c.57]

    Механические свойства стеклопластиков на основе меламино-формальдегидной смолы повышают предварительным аппретированием стеклоткани некоторыми кремнийорганическими соединениями. При этом прочность при статич. изгибе становится выше 490 Mh m (4900 кгс/см ), а водопоглощение снижается до 0,4%. [c.55]

    Наиболее эффективными добавками в связующее также оказываются вещества, способные к химическому взаимодействию как со стеклом (прп миграции к границе раздела), так и со связующим, в результате которого происходит дополнительное отверждение связующего и улучшаются его физико-механические свойства. В частности, введение аминосодержащего кремнийорганического мономера АМ-2 (этоксисилан, содержащий аминогруппу в органическом радикале) в состав различных связующих приводит не только к повышению прочности связи пеаппретированного стеклянного волокна к смоле, но и к повышению показателей физико-механических свойств нленок, полученных из связующего, а также физико-механических свойств стеклопластиков, полученных на основе этого связующего [49]  [c.333]

    К положительным свойствам эпоксидных смол (применительно к использованию их для стеклопластиков) относятся низкая горючесть высокие диэлектрические свойства хорошая адгезия к стекловолокну низкое водопоглощение высокая химическая стойкость, особенно к щелочным растворам хорошие механические свойства малая усадка при отверждении устойчивость к вибрационным и к ударным нагрузкам. [c.208]

    Те.мпература и время прессования определяются кинетикой отверждения связующих и являются взаимозавиеящими факторами. Значения темперагуры и времени прессования выбирают с таки.м расчето.м, чтобы обеспечить заданные физико-механические свойства стеклопластиков. Известная зависимость. между степенью отверждения и физико-механическими свойства.ми связующего и стеклопластика позволяет при выборе оптимальных значений этих параметров руководствоваться зависуьмостью степени отверждения от температуры и вре.мени отверждения. Скорость нагрева также влияет на прочность изделий. При большой скорости нафева в изделии наблюдается значительное запаздывание нагрева средних слоев, что ведет к неодновременности отверждения и появлению внутренних напряжений. [c.222]

    В производстве конструкционных материалов планируется расширить номенклатуру и увеличить выпуск композиционных материалов (стеклопластиков, углепластиков, органопластиков и др.), обеспечить повышение их качества и улучшение технических характеристик. В производстве стекловолокна и стеклопластиков намечено вырабатывать не менее 50 % стекловолокна одностадийным методом и снизить за счет этого удельный расход драгоценных металлов. По сравнению с 1985 г. в 1,5—2 раза увеличится выпуск коррозионностойкнх стеклопластиков с одновременным расширением ассортимента изделий из них для замены дорогостоящих и дефицитных материалов. Предусмотрено увеличение выпуска пресс-материалов на основе полиэфирных, термопластичных и термореактивных связующих с высокими физико-механическими свойствами, расширение производства нетканых стекловолокнистых материалов на базе прогрессивных технологических процессов. [c.183]

    Механические свойства стеклопластиков, так же как наполненных дисперсными наполнителями полимеров, зависят от содержания в них волокна, хотя прочность и упругие свойства стеклянных волокон примерно на два порядка больше, чем полимерных связующих, и, казалось бы, что чем больше волокна в стеклопластике, тем выше его прочностные характеристики. Между тем существует оптимальное соотношение между содержанием армирующих волокон в материале и его прочностными и упругими характеристиками. Подробно механические свойства армированных систем описаны в ряде моногра1фий [2, 6—8 . [c.174]

    А ш к е н а 3 и Е. К.. Анизотропия механических свойств некоторых стеклопластиков. Изд. Ленингр. дома научн.-техн. пропаганды, 1961. [c.294]

    В то же время аппреты, содержащие аминогруппу, способствующие повышению показателей физико-механических свойств стеклопластиков на основе фенольных и эпоксидных смол, оказались малоэффективными в случае полиэфирных смол. Такая избирательность действия аппретов еще раз подтверждает решающее влияние химических процессов, происходящих между компонентами системы стеклянное волокно — аппрет — связующее. Действие аппретов на основе кремнийорганических соединений также оказывается избирательным и зависит от характера групп, связанных с атомом кремния. Избирательность действия аппретов создает известные технологические трудности, что обусловило применение универсальных аппретов. Препараты этого типа содержат группы с двойными связями, а также фенильные ядра или аминогруппы. Поэтому они могут взаимодействовать как с полиэфирными связующими, так и с фенольными и эпоксидными смолами. Примером такого универсального аппрета является продукт взаимодействия аллилтрихлорсилана с резорцином [32— 35] и продукт взаимодействия аллилового эфира 2,4,6-триметил-олфенола с винилтрихлорсиланом [36]. Имеются и другие виды универсальных аппретов [И, с. 240]. [c.332]

    Неметаллические материалы для оборудования, работающего в условиях температур жидкого водорода стекло, стеклопластики и пластические массы типа политетрафторэтилена и политрифторхлорэтилена. Эти пластические массы обладают наибольшей пластичностью при температуре жидкого водорода. Хорошими механическими свойствами при низких температурах обладают пластические массы, армированные стекловолокном. Политетрафторэтилен и полнтрифторхлорэтилен используют при изготовлении уплотнительных прокладок, клея и манжет, работающих в широком диапазоне температур. [c.496]

    Механические свойства стеклопластиков иа основе меламино-формальдегидной смолы повышают предварительным апирети )ованием стеклоткани некоторыми кремиийорганпческ1гмтг соединениями. При этом прочность при статич. нзгибе становится выше 490 Мн/л2 (4900 кгск.и ), а водопоглощение снижается до 0,4%. [c.58]

    Проводится исследование электрических и механических свойств стеклопластиков 1. л основе эпоксиноволачнпх смол в процесса длительного теплового старения пря температуре 2Ю°0, данные исследовгчий приведены в диЕЯйче, [c.186]

    Известны совмещенные эпоксифурановые смолы, обладающие высокими физико-механическими свойствами. Они применяются для изготовления стеклопластиков, имеющих предел прочности при растяжении до 5000 кг/сж и малочувствительных к воздействию воды. [c.151]

    Волокна. В качестве Н. п. могут применяться как непрерывные, так и рубленые (штапельные) волокна длиной от нескольких десятков мкм до нескольких десятков мм (см. табл. 2). В зависимости от соотношения показателей механических свойств полимера и наполнителя, размеров волокон, а также от характера взаимодействия на поверхности раздела полимерная матрица — волокно последние могут проявлять свойства как обычных дисперсных, так и армирующих наполнителей, упрочняющее действие к-рых весьма значительно вследствие реализации определенной доли прочности наполнителя. Для эффективного армирования термопластов длина волокна должна быть не менее 200 мкм при наполнении реактопла-стов применяют волокна различной длины. Волокнистые наполнители пластмасс позволяют значительно повысить физико-механич. свойства, тепло-, износо-, химстойкость и др. показатели пластмасс. При использовании волокон в виде непрерывных нитей получают изделия с исключительно высокими прочностными показателями (см. Армированные пластики, Стеклопластики). [c.172]

    Термин стеклопластики охватывает обширную группу слоистых пластмасс с разными физико-механическими свойствами, химической стойкостью, следовательно, и с различными врзможностямн их применения. Свойства стеклопластиков определяются совокупностью многих факторов, в частности, природой и свойствами стеклянных волокон, природой и свойствами связуюш,его — синтетических смол-, соотношением этих компонентов, условиями изготовления, поверхностной обработкой волокон и многими другими факторами. [c.165]

    Теплопроводность эпоксидных смол и стеклопластиков на их основе растет с увеличением объемного веса смолы и стеклопластика [248]. В ряде статей описаны адгезионные свойства эпоксидных смол [250—256]. Штирли [258], Делмонт [259] и другие [260] исследовали механические свойства эпоксидных смол, содержащих наполнители. [c.62]

    Из табл. IV-25 (заимствованной из иностранной литературы) следует, что применение гидрофобных составов значительно увеличивает способность стеклопластика стабилизировать свои физико-механические свойства как в сухом, так и, особенно, во влажном состоянии. Гидрофобиза-торы, условно названные NOL, представляют собой продукты взаимодействия аллилтрихлорсилана и резорцина. Для увеличения адгезии эпоксидной смолы к стекловолокну в состав стекла вводят до 19% U2O, которая восстанавливается на поверхности стекловолокна до металлической меди в среде азота и метана при 900°. Образцы такого стеклопластика с однонаправленным расположением волокон имеют предел прочности при растяжении до 16 000 кг/сл2. [c.239]


Библиография для Стеклопластики механические свойства: [c.145]    [c.526]    [c.252]    [c.804]   
Смотреть страницы где упоминается термин Стеклопластики механические свойства: [c.452]    [c.200]    [c.255]    [c.328]    [c.328]    [c.116]    [c.124]    [c.68]    [c.229]    [c.209]   
Реология полимеров (1966) -- [ c.181 , c.183 , c.184 ]

Справочник по пластическим массам Том 2 (1975) -- [ c.448 , c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Стеклопластики



© 2025 chem21.info Реклама на сайте