Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протопласты

    Цитоплазма бактерий. Все содержимое клетки, ограниченное клеточной стенкой, называется протопластом. Протопласт состоит пз цитоплазматической мембраны и живого вещества клетки — цитоплазмы, или протоплазмы. Цитоплазма бактерий является бесцветной, прозрачной, слегка вязкой. [c.249]

    ИЗОЛИРОВАННЫЕ ПРОТОПЛАСТЫ, ИХ ПОЛУЧЕНИЕ И КУЛЬТИВИРОВАНИЕ [c.176]

Рис. 6.7. Схема слияния протопластов под действием полиэтиленгликоля Рис. 6.7. <a href="/info/1384586">Схема слияния протопластов</a> под действием полиэтиленгликоля

    Основными причинами гибели организмов под влиянием высоких температур является распад белков протоплазмы, а также образование токсичных промежуточных и конечных продуктов этого распада. При распаде белков нарушается суб-микроскопическая структура протопласта и соответственно координация происходящих в различных частях протопласта физико-биологических процессов, которые регулируются целой системой, сопряженно действующих ферментов. Помимо распада белков при повышенных температурах происходит и инактивация ферментов, которая также гибельна для организмов. [c.157]

    По своему строению водоросли могут быть одноклеточными, многоклеточными и колониальными формами. Некоторые из них имеют клетку без плотной оболочки и лишь с уплотненным внешним слоем протоплазмы, вследствие чего обладают способностью изменять свою форму. Другие же характеризуются плотной оболочкой, большей частью состоящей из целлюлозы. Часто в состав оболочки входят пектиновые вещества. У некоторых групп оболочка сильно пропитана известью или кремнеземом. Одни клетки содержат одно или несколько ядер, другие типичного ядра не имеют, лишь в протопласте заметна окрашенная периферическая часть и неокрашенное центральное тело. У некоторых водорослей красящие вещества находятся в особых плазменных телах различной формы, которые называются хроматофорами. Большей частью в хроматофоры бывают включены плотные тельца — пиреноиды, богатые белковыми веществами. Вокруг пиреноидов отлагается крахмал, являющийся одним из продуктов ассимиляции. Запасными питательными веществами служат масла, жиры, лейкозин, маннит и глюкоза. [c.269]

    Самопроизвольное слияние протопластов происходит достаточно редко. Механизм этого процесса до конца не выяснен. Однако известно, что протопласты имеют отрицательный поверхностный [c.188]

    При бесполом размножении протопласт материнской клетки делится на несколько частей, которые развиваются самостоятельно в новые клетки. [c.269]

    Т. у дрожжей м. б. осуществлена только искусственным путем. Для этой цели используют протопласты шш обрабатывают клетки солями щелочных металлов. ДНК проникает в дрожжевые протопласты также под действием электрич. разрядов (т.наз. электропорация). [c.626]

    Методы прямого переноса генов в растение. Эти методы возникли благодаря появлению специфического объекта — изолированных протопластов, т. е. клеток, лишенных целлюлозной стенки. [c.148]

    Трансформация растительных протопластов. Осуществляется благодаря комбинации методик кальциевой преципитации ДНК и слияния протопластов. Для трансформации может быть использован практически любой ДНК-вектор. Донорная ДНК может не содержать специальных биологических сигналов (vir-областей, пограничных областей Т-ДНК). [c.148]


    Культуру протопластов на начальной стадии ее роста заражают агробактериями, которые используют в качестве векторов. [c.148]

    Большое значение в создании новых форм растений для изучения взаимодействия ядерного генома и геномов органелл имеет способность изолированных протопластов сливаться, образуя габ-ридные клетки. Таким способом можно добиться получения габ-ридов от растений с разной степенью таксономической удаленности, но обладающих ценными хозяйственными качествами. [c.177]

    Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов. [c.178]

    Сине-зеленые водоросли СуапорНусеае) (ряс. 89) — одно- или многоклеточные организмы, характеризуются особым строением клетки. В ней нет типичного ядра и хроматофоров. Протопласт сине-зеленых водорослей дифференцирован на периферически окрашенный слой (хроматоплазма) и центральную часть (центроплазма). Ассимилирующие пигменты—хлорофилл, фико-цин, фикоэритрин и каротин. В ячеях лежат особые тельца —эндопласты плотной или вязкой консистенции. В плазматических стенках ячей между эндопластами находится хроматиновое вещество , красящееся ядерными красками. [c.271]

    Соматическая гибридизация имеет важные особенности. Во-первых, этому процессу доступны практически любые скрещивания, перенос генов на далекие таксономические расстояния. Во-вторых, слияние протопластов способствует объединению цитоплазматических генов родительских клеток, чего не бывает при скрещивании половых клеток. [c.188]

    Живая клетка имеет три части оболочку живое содержимое -протопласт вакуоли. У растительных клеток формирование оболочки (клеточной стенки) обусловлено деятельностью протопласта. Вакуоль -это полость с клеточным соком. Вакуоли в клетках образуются и увеличиваются в объеме по мере роста клеток. Протопласт (протоплазма) состоит из цитоплазмы и включенных в нее органоидов (органелл). [c.195]

    Однако вирусы в качестве векторов обладают и существенными недостатками имеют небольшую емкость, патогенны и неспособны встраиваться в хромосомы хозяина. Небольшую емкость можно увеличить, если инфицировать вирусом (например, ВМЦК) растительные протопласты, а не клетки. В этом случае инфекция не передается от клетки к клетке, нет необходимости в упаковке ДНК в вирусные частицы. [c.148]

    Ni otiana) обрабатывали для удаления клеточной стенки ферментами, разрушающими целлюлозу и пектин. Затем вызывали слияние образующихся протопластов с протопластами других видов табака, получая в результате гибриды, образованные неполовым путем . Хотя на пути к практическому применению этого метода придется преодолеть многие препятствия, тем не менее с его помощью, по-видимому, можно будет получить большое число новых растений. [c.269]

Рис. 6.2. Использование культуры суспензионных клеток в качестве кормящего слоя для выращивания изолированных протопластов и одиночных клеток кукурузы (Ву Дык Куанг, З.Б.Шамина, 1985) Рис. 6.2. Использование <a href="/info/1381293">культуры суспензионных</a> клеток в качестве кормящего слоя для выращивания изолированных протопластов и одиночных клеток кукурузы (Ву Дык Куанг, З.Б.Шамина, 1985)
    С помощью плазмид можно также осуществить Т. протопластов (клетки с удаленной клеточной стенкой), к-рые затем регенерируют в полноценные клетки. ДНК, проникая в них, почти не повреждается и остается двунитевой. Плаз-мидная Т. во многом близка к т.наз. трансфекции, когда бактерии поглощают ДНК фага (вирус бактерий), предварительно выделенную из фаговых частиц. Эта ДНК в бак-терщ1 кодирует образование новых частиц фага, к-рые разрушают затем бактериальную клетку и выходят наружу. [c.626]

    Клетки растений не способны поглощать ДНК. При Т. клеток двудольных растений используют регенерирующие протопласты, поглощающие свободную ДНК и ДНК, заключенную в липосомы. Регенерирующие трансформированные протопласты образуют т. наз. каллусную ткань, из к-рой затем формируется растение. Др. способом введения чужеродной ДНК в геном таких растит, клеток является естественное заражение их бактерией Agroba terium tume- [c.626]

    Клеточные суспензии играют значительную роль в биотехнологии. Они могут бьггь использованы для получения изолированных протопластов, которые применяют для клеточной селекции, при введении чужеродных ДНК и других процессах. Клеточные суспензии культивируют в больших количествах для получения вторичных метаболитов, выявления новых веществ, для выращивания клеточной биомассы. Однако увеличение клеточной биомассы в результате деления клеток и синтез вторичных метаболитов разобщены во времени. Поэтому необходимо хорошо знать физиологию, свойства клеток в суспензионных культурах, чтобы получить максимальный выход продукта. Состояние клеточных суспензий характеризуется плотностью клеточной популяции. За 14—16 дней (средняя длительность пассажа) плотность обычно повышается от 5- Ю до 5-10 кл/мл. Качество суспензии определяется степенью агреги-рованности. Агрегаты должны содержать не более 10 — 12 клеток. [c.167]


    Гибридизация соматических клеток осуществляется благодаря слиянию протопластов, изолированных из соматических клеток растений, и служит для создания новых генотипов, новых форм растений. Использование изолированных протопластов позволяет решать множество теоретических и практических задач. С их помощью можно вести селекцию на клеточном уровне, работать в малом объеме с большим числом индивидуальных клеток, осуществлять прямой перенос генов, изучать мембраны, вьщелять пла-ствды. Протопласты непременно участвуют в соматической гибридизации. Термин соматическая гибридизация , означающий процесс слияния протопластов соматических клеток, был введен №. Мельхерсом в 1974 г. [c.188]

    Впервые термин изолировагшые протопласты был предложен Д.Ханстейном в 1880 г. Протопласт в целой клетке можно наблюдать во время плазмолиза. Изолированный протопласт — это содержимое растительной клетки, окруженное плазмалеммой. Целлюлозная стенка у данного образования отсутствует. Изолированные [c.176]

    Первое успешное вьщеление протопластов из клеток высших растений данным методом сделано Е. Коккингом в 1960 г. По сравнению с механическим ферментативный метод имеет ряд преимуществ. Он позволяет сравнительно легко и быстро вьщелять большое количество протопластов, причем они не испытывают сильного осмотического шока. После действия ферментов смесь протопластов пропускают через фильтр и центрифугируют для удаления неразрушенных клеток и их осколков. [c.177]

    После получения различных сомаклональных вариаций от исходного растения наступает следующий этап — отбор необходимых сочетаний признаков. Данный вопрос решается с помощью клеточной селекции, которую проводят практически на любом объекте, введенном в культуру in vitro. Однако удобнее использовать суспензионную культуру или изолированные протопласты. Преимущество этих объектов состоит в быстром росте культуры и равномерном действии селективного фактора на все клетки. Для отбора сомаклональных вариаций соответствующие селективные факторы (соли в высоких концентрациях, гербициды и др.) добавляют в питательную среду для выращивания культуры клеток либо растущие культуры помещают в селективные условия (низкая или высокая температура, освещенность и т.д.). Существует несколько методов клеточной селекции  [c.187]

    Кроме того, существует физический фактор — импульсы электрического тока, который также заставляет протопласты сливаться. Обработка электрическими импульсами, как и обработка ПЭГ, приводит к обратимому повреждению мембран. Применение переменного тока вызывает диэлектрофорез, и прототшасты, находящиеся между электродами, выстраиваются в ряд, примыкая друг к другу своими полярными поверхностями. Импульс постоянного [c.189]

    При соматической габридизации развиваются клетки двух типов гибриды и цибриды. При образовании гибридов объединяется ядерный геном обеих клеток. Цибридная клетка содержит цитоплазму обоих партнеров, а ядро — одного. Такой результат достигается при деградации одного из ядер после слияния или в том случае, если один из протопластов был лишен ядра. [c.190]

Рис. 6.8. Схема слипания протопластов под действием электрического поля (по X. Борнман, 1991) Рис. 6.8. Схема слипания протопластов под действием <a href="/info/12353">электрического поля</a> (по X. Борнман, 1991)

Смотреть страницы где упоминается термин Протопласты: [c.249]    [c.626]    [c.145]    [c.159]    [c.173]    [c.177]    [c.177]    [c.177]    [c.179]    [c.186]    [c.189]    [c.189]    [c.190]    [c.190]    [c.190]    [c.190]    [c.191]    [c.21]    [c.22]    [c.196]   
Биохимия Том 3 (1980) -- [ c.21 ]

Молекулярная биотехнология принципы и применение (2002) -- [ c.136 , c.256 , c.258 ]

Микробиология Издание 4 (2003) -- [ c.35 ]

Молекулярная биология клетки Том5 (1987) -- [ c.166 , c.171 , c.206 ]

Общая микробиология (1987) -- [ c.23 , c.27 , c.50 , c.54 , c.77 , c.471 ]

Химия и биология вирусов (1972) -- [ c.173 ]

Жизнь зеленого растения (1983) -- [ c.24 , c.25 , c.69 , c.72 , c.173 , c.174 ]

Клеточная инженерия (1987) -- [ c.5 , c.7 , c.30 , c.34 , c.35 , c.36 , c.41 , c.42 , c.44 , c.47 , c.49 , c.51 , c.52 , c.57 , c.60 , c.122 ]

Микробиология Изд.2 (1985) -- [ c.30 ]

Генная инженерия растений Лабораторное руководство (1991) -- [ c.0 ]

Гены и геномы Т 2 (1998) -- [ c.249 ]

Методы практической биохимии (1978) -- [ c.35 ]

Фотосинтез (1983) -- [ c.114 ]

Микробиология (2003) -- [ c.24 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.224 ]




ПОИСК







© 2024 chem21.info Реклама на сайте