Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос генов

    Следующий этап генетической инженерии—перенос генов в клетку — осуществляется тремя способами трансформацией (перенос генов посредством выделенной из клеток и освобожденной от примесей ДНК), трансдукцией (перенос генов посредством вирусов) и гибридизацией клеток, полученных из разных организмов (высших животных, микроорганизмов и др.) (рис. 13.7, 13.8). Заключительный этап этих экспериментов сводится к адаптации введенного гена в организме хозяина, но он почти не зависит от искусства экспериментатора. [c.496]


    Методы прямого переноса генов довольно многочисленны  [c.148]

    Перенос генов с помощью искусственных дрожжевых хромосом [c.428]

    К этому направлению научно-технического прогресса следует относиться особенно осторожно. Существует мнение, что биотехнология может внести решающий вклад в решение глобальных проблем человечества. Однако даже с помощью обычной гибридизации — близкородственного скрещивания — получают, по сути, уродов, пусть и с полезными для цивилизации свойствами. С помощью же генной инженерии оказалось возможным создавать структуры ДНК, которых никогда не существовало в биосфере (в химии аналог — ксенобиотики) генная инженерия, таким образом, разрушает барьер, разрешающий генетический обмен только в пределах одного биологического вида или близкородственных видов, позволяет переносить гены из одного живого организма в любой другой. Этот факт открывает перспективы создания, в частности, микроорганизмов и растений с полезными для цивилизации свойствами и таит в себе колоссальную опасность этического и экологического характера. Наиболее известный случай здесь — синтез и использование гормонов роста в животноводстве, приведшие к так называемому коровьему бешенству . [c.248]

    Каково происхождение факторов устойчивости к антибиотикам Почему в природе так широко распространены гены, обеспечивающие инактивацию столь необычных молекул, как антибиотики Возможно, это объясняется тем, что гены устойчивости к антибиотикам в обычной ситуации выполняют какие-то нормальные биосинтетические функции, но наличие в среде антибиотиков приводит к отбору мутантов, гены которых способны обеспечивать их инактивацию. Тем не менее до конца не ясно, почему факторы, обеспечивающие устойчивость к лекарственным препаратам, появляются так часто именно в популяции, обработанной антибиотиком. Частичным решением проблемы устойчивости послужило создание полусинтетических модификаций антибиотиков, встречающихся в природе. Поскольку К-факторы переносят гены, ответственные за синтез ферментов, изменяющих специфические участки антибиотика, иногда удается химически изменить эти участки таким образом, чтобы они больше не участвовали в ферментативной реакции, индуцируемой К-фактором. [c.258]

    Методы прямого переноса генов в растение. Эти методы возникли благодаря появлению специфического объекта — изолированных протопластов, т. е. клеток, лишенных целлюлозной стенки. [c.148]

    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]


    Соматическая гибридизация имеет важные особенности. Во-первых, этому процессу доступны практически любые скрещивания, перенос генов на далекие таксономические расстояния. Во-вторых, слияние протопластов способствует объединению цитоплазматических генов родительских клеток, чего не бывает при скрещивании половых клеток. [c.188]

    Урожаю многих сельскохозяйственных культур наносят ущерб сразу несколько видов насекомых, поэтому чрезвычайно полезным было бы создание микробиологических инсектицидов, направленных против широкого спектра насеко-мых-вредителей. Токсин широкого спектра действия можно получить двумя путями 1) переносом гена данного токсина (например, токсина, эффективного в отношении двукрылых) в штамм [c.337]

    Физические методы переноса генов в растительные клетки [c.379]

    После того как были установлены молекулярные основы трансформации бактерий (переноса генов из одного штамма в другой), у ученых появилась надежда, что аналогичный механизм — введение нормальных генов в дефектные соматические клетки — можно будет использовать для лечения наследственных заболеваний человека. Перспективы генной коррекции соматических клеток стали более реальными в 1980-х гг. к этому времени были [c.484]

    Ретровирусы активно инфицируют реплицирующиеся клетки. Для переноса генов в интенсивно растущие клетки-мишени последние обрабатывают очищенными частицами упакованного [c.489]

    Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, к которым относится устойчивость к отдельным лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ. Из перечисленного выше видно, что плазмиды делают возможным существование организмов в более широком диапазоне условий внешней среды, т.е. действуют как факторы адаптации. Большую группу составляют плазмиды с нерасшифрованными функциями такие плазмиды выявляют с использованием физико-химических методов. [c.144]

    Выше мы рассмотрели организацию генетического аппарата прокариот, осуществляющего передачу генетической информации от одного поколения к следующему, т.е. по вертикали , обратив внимание на такие его черты, как стабильность и точность функционирования. Однако стабильность генетического аппарата не абсолютна и при всей надежности изменения являются его неотъемлемым свойством. Для прокариот характерна большая способность к генетическим изменениям, являющимся результатом мутаций, а также развития путей горизонтального переноса генов между бактериальными клетками. [c.153]

    Некоторые бактериальные плазмиды (обычно достаточно крупные) способны передаваться из одной клетки в другую, иногда даже в клетку другого вида бактерий (как правило, не слишком далекого). Такие плазмиды называются трансмиссивными, и их свойства определяются группой генов, ответственных за перенос (гены 1га). Трансмиссивные плазмиды кодируют специальные ворсинки, половые пили, которые появляются на поверхности клеток, содержащих плазмиды, и способны специфически связываться с поверхностью бесплазмидных клеток. Последующее сокращение пиля притягивает клетки друг к другу и. между ними образуется мостик, через который плаз.мидная ДНК может передаться в новую клетку. га-Гени разных плазмид часто сходны между собой. [c.111]

    Подобно температурочувствительным мутантам, amber- и o hre-мутанты могут быть получены практически для любого гена бактериофага. Мутантов с терминацией цепи, у которых утерянные гены не имеют жизненно важного значения для бактерий, можно распознать, обеспечив перенос генов либо путем скрещивания, либо путем вирус- [c.254]

    Гибридизация соматических клеток осуществляется благодаря слиянию протопластов, изолированных из соматических клеток растений, и служит для создания новых генотипов, новых форм растений. Использование изолированных протопластов позволяет решать множество теоретических и практических задач. С их помощью можно вести селекцию на клеточном уровне, работать в малом объеме с большим числом индивидуальных клеток, осуществлять прямой перенос генов, изучать мембраны, вьщелять пла-ствды. Протопласты непременно участвуют в соматической гибридизации. Термин соматическая гибридизация , означающий процесс слияния протопластов соматических клеток, был введен №. Мельхерсом в 1974 г. [c.188]

    Установлена структура и локализация генов А. Осуществлен их перенос из азотфиксирующей бактерии в кишечную палочку, у к-рой после этого появляется способность к А. Исследования в этой области направлены на поиски высокоактивных штаммов азотфиксирующих бактерий, изучение возможности переноса генов А. в высшие растения (это позволило бы избавиться от необходимости применения азотных удобрений). Большое практич. значение имело бы создание более эффективных катализаторов для пром. синтеза NHj из N2, подобных по механизму действия нитроге-назе. [c.64]


    Применение методов генетической инженерии в животноводстве открывает перспективу изменения ряда свойств организма повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшение качества продукции и др. Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, — трансгеном. Продукт этого гена (белок) является трансгенным. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создавать трансгенные линии. [c.127]

    Перенос генов в растительные клетки, так же как в клетки животных, и их встраивание в геном растений (трансформация) осуществляются главньпй образом благодаря специфическим структурам — векторам. [c.145]

    Вектор (Ve tor) Самореплицирующаяся молекула ДНК (например, бактериальная плазмида), используемая в генной инженерии для переноса генов от орга-низма-донора в организм-реципиент, а также для клонирования нуклеотидных последовательностей. [c.545]

    В сороковых годах Мак-Клйнток впервые установила, что гены обладают подвижностью. Участки геномов могут менять свои места (транспоаоны), в геном могут включаться плазмиды (с. 268), играющие исходно роли или паразитов, или симбионтов. Возможен горизонтальный перенос генов от одних организмов к другим — главным образом у прокариот. Эти явления подробно рассмотрены в фундаментальном труде Хесина ( Непостоянство генома , 1983). [c.298]

    Это была одна из первых работ, относящихся к той области исследований, которуто иногда называют инженерией метаболизма. В такого рода работах из одного микроорганизма в другой переносят гены, ответственные за какую-то часть метаболического пути, так что второй микроорганизм приобретает способность синтезировать новые метаболиты. [c.265]

    Необходимо, чтобы процедура переноса генов, используемая для генной терапии ех vivo. [c.487]

    Эффективность аденовирус-опосредованно-го переноса генов можно повысить, если сконструировать вирус, проникающий преимущественно в определенную клетку-мищень. Для этого в ген, ответственный за образование нитей аденовируса, следует включить последовательность, кодирующую домен белка, который связывается с клеточноспецифичным рецептором. [c.496]

    Генная инженерия, или техника рекомбинантных ДНК,— это совокупность приемов, позволяющих путем операций in vitro перенести генетический материал из одного организма (который принято называть источником генов) в другой (называемый хозяином илн реципиентом) таким образом, чтобы обеспечить наследование этих генов в новом для них организме. Перенос генов методами генной инженерии дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим (например, от человека или животного — бактерии и т. п.). В генной инженерии широко используются подходы и методы биоорганической химии. [c.426]


Смотреть страницы где упоминается термин Перенос генов: [c.257]    [c.257]    [c.257]    [c.258]    [c.259]    [c.269]    [c.295]    [c.149]    [c.152]    [c.154]    [c.208]    [c.379]    [c.392]    [c.485]    [c.501]    [c.208]    [c.512]   
Общая микробиология (1987) -- [ c.0 , c.459 , c.460 , c.461 ]

Генетика с основами селекции (1989) -- [ c.0 ]

Иммунологические методы исследований (1988) -- [ c.40 , c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте