Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмбриогенез

    И. Пригожиным сформулировано иоло кение, по которому производство энтропии системой, находящейся в стационарном состоянии, стремится к м и н и м у м у. Установлено, что производство энтропии возрастает в период эмбриогенеза, при процессах регенерации и росте злокачественных новообразований. [c.20]

    Пространственная экспрессия генов сегментации строго регулируется в раннем эмбриогенезе. Ответ на вопрос о том, каким образом достигается пространственная экспрессия этих генов, тесно связан с решением проблемы закономерностей развития. [c.216]


    Соматический эмбриогенез очень важен для фундаментальных наук. Он позволяет изучать механизмы эмбриогенеза, так как почти все его фазы, за исключением первой, в растении и в культуре тканей совпадают. Наиболее ранняя из изученных фаз детерминации клетки по эмбриональному пути развития состоит в при- [c.175]

    Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов. [c.178]

    Соматический эмбриогенез в настоящее время применяют для размножения пшеницы, ячменя, моркови, редиса, винограда, некоторых древесных растений (дуб, ель, эвкалипт). [c.196]

    В настоящее время продолжается рост концентрации токсичного поллютанта - фенола в водных объектах Российской Федерации, обусловленное сбросом сточных вод нефтехимических и нефтеперерабатывающих заводов, компаний по производству фармацевтических препаратов, строительных материалов, а также ливневыми стоками железнодорожных магистралей и автозаправочных станций. Повышенное содержание фенола свыше 10 ПДК в водных объектах Тюменского региона определяется совокупностью климатических, геологических и морфологических факторов, что приводит к снижению процессов самоочищения в водоемах. В результате биохимической деструкции фенола в воде происходит изменение всех элементов гидрохимического режима, нарушается нормальный ход эмбриогенеза живых организмов. [c.3]

    Изменения в организме человека при авитаминозе Е изучены недостаточно, поскольку с растительными маслами человек получает достаточное количество витамина Е. Недостаточность его отмечена в некоторых тропических странах, где основным источником пищи являются углеводы, тогда как жиры употребляются в незначительных количествах. Препараты витамина Е нашли применение в медицинской практике. Они иногда предотвращают самопроизвольные (или привычные) аборты у женщин. У экспериментальных животных, в частности крыс, недостаточность витамина Е вызывает нарушение эмбриогенеза и дегенеративные изменения репродуктивных органов, что приводит к стерильности. У самок в большей степени поражается плацента, чем яичники процесс оплодотворения яйца не нарушен, но очень скоро плод рассасывается. У самцов происходит атрофия половых желез, приводящая к полной или частичной стерильности. К специфическим проявлениям недостаточности витамина Е относятся также мышечная дистрофия, жировая инфильтрация печени, дегенерация спинного мозга. Следствием дегенеративных и дистрофических изменений мышц является резкое ограничение подвижности животных в мышцах резко снижается количество миозина, гликогена, калия, магния, фосфора и креатина и, наоборот, повышается содержание липидов и хлорида натрия. [c.219]


    О возрастании ценности информации в биологическом развитии свидетельствует ряд фактов. Рекапитуляция означает возрастание незаменимости информации в эмбриогенезе. На ранних [c.566]

    Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (Од), и, возможно, особенностям эмбриогенеза этого животного. Дело в том, что в течение первых трех делений зиготы овцы, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки. [c.426]

    Дефицит витамина Е приводит к нарушениям эмбриогенеза и репродуктивных органов. Кроме того, недостаток токоферола является причиной дегенерации спинного мозга и легочной дистрофии. Животные реагируют на авитаминоз Е по-разному У крыс в первую очередь наблюдаются нарушения репродуктивных органов, а у морских свинок — дегенеративные изменения в мышечной ткани. [c.102]

    Тератогены — факторы, вызывающие нарушение эмбриогенеза, следствием которого является возникновение аномалий развития (так называемый дефект рождения). К тератогенам отиосятся ионизирующие излучения, химические соединения, в том числе лекарственные препараты. [c.290]

    Андрогенез — процесс развития растения из микроспоры, или пыльцевого зерна, либо через гаметический эмбриогенез, либо из каллуса. [c.492]

    Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибла-стов — клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез — образование органов и соматический эмбриогенез — образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была вьщелена. Потенциальные возможности всех клеток этого растения одинаковы каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400—1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидер-мальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования [c.173]

    В связи с этим особый интерес представляют работы Ю. Б. Долгих (1994), в которых было установлено, что слабый постоянный электрический ток (2 мкА) может быть индуктором эмбриогенеза. Соматический эмбриогенез фактически не зависргг от экзогенных фитогормонов, только развитие сформировавшихся соматических зародышей начинается в отсутствие ауксинов в среде. Однако содержание эндогенных фитогормонов ршеет решающее значение для индукции эмбриогенеза. [c.176]

    На регуляцию морфогенеза существенно влияет качество света. Показано (Л. Коппель, 1992), что морфогенный каллус образуется чаще на синем свету, чем на белом или красном. Изменения на уровне индивидуальных белков во время реализации морфогенетической программы в культуре тканей позволили говоррггь о существовании белков развития. Однако отсутствие специфических тестов на эти белки не позволяет их выяврггь. Вместе с тем при использовании гибридов, продуцирующих моноклональные антитела на мембранные белки соматических зародышей, удалось выявить полипептид с молекулярной массой 45 кДа, который встречается в ядре нескольких видов растений и возможно участвует в регуляции клеточного деления (Г. Смит и др., 1988). В настоящее время большое внимание уделяется генетическому аспекту морфогенеза, изучению соматического эмбриогенеза как генетически наследуемого признака. Роль основного двигателя процесса развития отводится дифференциальной активности генов. Предполагается, что гены, контролирующие соматический эмбриогенез, начинают экспрессироваться в критические периоды развития эмбриоидов (H.A.Моисеева, 1991). [c.176]

    По-разному сказываются на генетических изменениях и, следовательно, на появлении сомаклональных вариаций различные тигп>1 морфогенеза. Экспериментально установлено, что при соматическом эмбриогенезе цикл клетка—растение совершается значительно быстрее, чем при органогенезе. Поэтому степень различия между полученным и исходным родительским генотипом в случае органогенеза может быть значительно выше, чем при эмбриогенезе. [c.187]


    Иглокожие (E hinodermata), к которым относятся морские звезды, морские ежи и голотурии, рассматриваются как тип животных, достигших высокой ступени эволюционного развития. Особенно тщательно исследован процесс их эмбриогенеза. [c.53]

    Новые данные свидетельствуют о том, что в клетках фосфопротеины синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Этот процесс подробно рассматривается в главе 14. Здесь лишь укажем на существенную роль специфической протеинкиназы, катализирующей фосфорилирование ОН-группы тирозина, в биосинтезе онкобелков. Таким образом, уровень фосфопротеинов в клетке зависит в значительной степени от регулирующего действия ферментов, катализирующих фосфорилирование (протеинкиназы) и дефосфорилирование (протеинфосфатазы). Следует отметить, что фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. Кроме того, они являются ценным источником энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постна-тального роста и развития организма. [c.90]

    Биологическая эволюция определяется преимущественным выживанием популяций, более приспособленных к условиям среды. Соответственно строение организма характеризуется такой приспособленностью и адаптацией к определенной экологической нише. Поэтому в биологии естественным образом возникает фи-иалистическая трактовка изучаемых явлений. Развитие зиготы во взрослый организм можно описывать, пользуясь понятием щели целью развития является создание приспособленного организма. Уже на ранних стадиях эмбриогенеза определенные группы клеток предназначены для развития в определенный орган, и этим задается их функциональность на всех уровнях, вплоть до молекулярного. [c.15]

Рис. 17.12. Изменение продукции специапизпропанных белков в ходе эмбриогенеза 1 — предифференциропанное состояние 2 — протодифферен-цированное состояние (стадия I) 3 — дифференцированное состояние (стадия II) 4 — дефинитивное состояние (стадия III) а, б, в—переходы Рис. 17.12. Изменение продукции специапизпропанных белков в ходе эмбриогенеза 1 — предифференциропанное состояние 2 — протодифферен-цированное состояние (стадия I) 3 — <a href="/info/1900920">дифференцированное состояние</a> (стадия II) 4 — дефинитивное состояние (стадия III) а, б, в—переходы
    В биологии естественно возникает финалистическая трактовка изучаемых явлений. Развитие зйготы во взрослый организм можно описывать, пользуясь понятием цели целью развития является создание организма. Его структура целесообразна, она соответствует условиям существования. Уже на ранней стадии эмбриогенеза определенные группы клеток предназначены для развития в определенный орган, и этим задается их функциональность на всех уровнях вплоть до молекулярного. Также описывается и филогенез — эволюционное развитие. Оно направлено в сторону наибольшей приспособленности популяции— элементарной эволюционирующей системы — к внешним условиям. [c.18]

    По мере истощения природньгх рыбных запасов все большую роль будет приобретать разведение рыбы в искусственных условиях. Основная цель исследований в этой области — создание рекомбинантных рыб путем трансгеноза. До настоящего времени трансгены вводили микроинъекцией ДНК или электропорацией оплодотворенных яйцеклеток различных видов рыб — карпа, зубатки, форели, лосося и т. д. Поскольку у рыб пронуклеус в оплодотворенной яйцеклетке плохо различим в обычный микроскоп, линеаризованную трансгенную ДНК вводят в цитоплазму оплодотворенных яйцеклеток или клеток эмбрионов, достигших стадии четырех бластомеров. Эмбриогенез у рыб протекает в водной среде вне организма, поэтому в имплантации нет необходимости. Все дальнейшие процессы могут протекать в резервуарах с регулируемой температурой. Выживаемость эмбрионов рыб после микроинъекций довольно высока, от 35 до 80%, а доля трансгенных потомков колеблется от 10 до 70%. Трансген можно обнаружить с помощью ПЦР с использованием либо препаратов эритроцитов зародышей, либо суммарной ДНК. Скрещивая трансгенных рыб, можно вывести трансгенные линии. [c.438]

    Соматический эмбриогенез — образование эмбриоидов (зародышевых структур) в культурах клеток и тканей способом, напоминающим нормальный зиготический эмбриогенез другими словами соматический эмбриогенез — это процесс эмбриоинициации и развития из вегетативных или не гаметических клеток. [c.498]

    В последние годы все чаще применяют специальные емкости (сосуды) для изоляции в асептических условиях органов из молодых растений. Фирма Sigma ( IIIA) к 1990 г. ввела новые мембранные наборы для культур растительных тканей. Их изготавливают из микропористой полипропиленовой мембраны, обработанной специальным ПАВ для улучшения прохождения питательных веществ. Мембранные наборы могут быть использованы при культивировании протопластов, в соматическом эмбриогенезе, при получении культур цветов и в других направлениях. [c.501]

    TGFa — одиночный полипептид, содержащий 50 аминокислотных остатков он взаимодействует с тем же рецептором, что и EGF и проявляет такую же потенцию в индуцировании тирозин-киназной активности, связанной с EGF-рецептором. TGFa, в отличие от EGF, "запускает" эмбриогенез и активацию протоонкогенеза в течение регенерации поврежденных тканей. [c.553]

    Случаев гибели яиц в выводковых камерах нет. Средний индекс синхронности овогенеза и эмбриогенеза становится отрицательным. Вода для опытов взята с оли-госадробно-мезосапробного участка водоема. В опыты вносится недостаточно корма. [c.165]

Рис. 14-28. Различные стадии оогенеза. Из первичных половых клеток, мигрирующих в янчник на ранней стадии эмбриогенеза, развиваются оогонии. После ряда митотических делений оогонии приступают к первому делению мейоза, и иа этой стадии их называют уже ооцитами первого порядка. У млекопитающих ооциты первого порядка формируются очень рано и остаются на стадии профазы I до тех пор, пока самка не достигнет половой зрелости. После этого под влиянием гормонов периодически созревает небольшое число ооцитов, которые завершают первое деление мейоза и превращаются в 00Щ1ТЫ второго порядка последние претерпевают второе деление мейоза и становятся зрелыми яйцеклетками. Стадия, на которой яйцеклетка выходит из яичника и оплодотворяется, у разных животных различна. Рис. 14-28. <a href="/info/711387">Различные стадии</a> оогенеза. Из <a href="/info/510394">первичных половых</a> клеток, мигрирующих в янчник на <a href="/info/1328681">ранней стадии</a> эмбриогенеза, развиваются оогонии. После ряда <a href="/info/101309">митотических делений</a> оогонии приступают к <a href="/info/1355109">первому делению мейоза</a>, и иа этой стадии их называют уже ооцитами <a href="/info/891867">первого порядка</a>. У млекопитающих ооциты <a href="/info/891867">первого порядка</a> формируются очень рано и остаются на стадии профазы I до тех пор, пока самка не достигнет половой зрелости. После этого под <a href="/info/191134">влиянием гормонов</a> периодически созревает небольшое число ооцитов, которые завершают <a href="/info/1355109">первое деление мейоза</a> и превращаются в 00Щ1ТЫ <a href="/info/136639">второго порядка</a> последние претерпевают <a href="/info/1355105">второе деление мейоза</a> и становятся зрелыми яйцеклетками. Стадия, на которой яйцеклетка выходит из яичника и оплодотворяется, у <a href="/info/627457">разных животных</a> различна.
    В некоторых яйцеклетках процесс накопления дополнительной ДНК идет еще дальше, приводя к образованию добавочных копий определенных генов. В главе 8 мы уже видели, что для образования достаточного числа рибосом, на которьгх происходит синтез бежов, соматическим клеткам большинства организмов требуется от 10 до 500 копий генов рибосомиой РНК. Поскольку яйцеклетки нуждаются в еще большем количестве рибосом для белкового синтеза на ранних стадиях эмбриогенеза, в яйцах некоторьа амфибий гены рРНК амплифицируются, образуя 1-2 млн. копий (рис. 14-29). [c.31]


Смотреть страницы где упоминается термин Эмбриогенез: [c.48]    [c.175]    [c.176]    [c.194]    [c.196]    [c.230]    [c.271]    [c.287]    [c.486]    [c.427]    [c.428]    [c.230]    [c.466]    [c.466]    [c.499]    [c.19]    [c.162]    [c.218]   
Смотреть главы в:

Цитология растений Изд.4 -> Эмбриогенез

Практикум по цитологии растений Изд.4 -> Эмбриогенез

Сборник Иммуногенез и клеточная дифференцировка -> Эмбриогенез


Принципы структурной организации белков (1982) -- [ c.230 ]

Принципы структурной организации белков (1982) -- [ c.230 ]

Современная генетика Т.3 (1988) -- [ c.248 ]

Цитология растений Изд.4 (1987) -- [ c.205 , c.218 ]

Генная инженерия растений Лабораторное руководство (1991) -- [ c.26 , c.95 , c.105 , c.160 , c.169 , c.184 ]

Физиология растений (1989) -- [ c.335 , c.339 ]

Гены и геномы Т 2 (1998) -- [ c.84 , c.85 , c.86 , c.366 , c.367 ]

Биология с общей генетикой (2006) -- [ c.166 ]

Цитоскелет Архитектура и хореография клетки (1987) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте