Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные переносчики поляризация

    Фундаментальная особенность энергетики живых систем заключается в том, что трансформация энергии в процессах жизнедеятельности осуществляется в окислительно-восстанови-тельных реакциях с участием ферментов и белковых переносчиков электрона. В результате исследований последних десяти лет обнаружен удивительный по своей простоте и универсальности молекулярный механизм преобразования энергии в клетках, включающий транспорт электронов и сопряженную с ним поляризацию биологической мембраны. Локализованные и структурно организованные в биологических мембранах белки осуществляют процессы обмена электронами. При этом часть энергии процесса трансформируется в концентрационный потенциал ионов водорода, поляризующий биологическую мембрану [1—3]. [c.68]


    X 10 гкм (—2 ма см ). По-видимому, в этих растворах, так же как и в более разбавленных, наряду с растворением электрода за счет внешней поляризации (анодной или катодной) происходит активное анодное растворение железного электрода, компенсируемое восстановлением перекиси водорода (ср. кривые 3, 3, 3" на рис. 9). Восстановление перекиси на корродирующем железном электроде может протекать, но-видимому, значительно легче, чем на инертном, так как Ге+ способны катализировать этот процесс, окисляясь раствором до Ре+ и затем восстанавливаясь железом опять до Ге . Обе реакции, как известно, протекают быстро. Таким образом, переносчики электронов в коррозионном процессе — ионы железа  [c.113]

    Некоторые ароматические субстраты с электронодонорными заместителями так активны, что их можно галоидировать непосредственно галоидом, проводя реакцию в инертных растворителях (бензол, сси и др.). У этих ароматических соединений л-электронная плотность бензольного кольца настолько повышена, что, смещаясь в сторону одного из атомов галоида, она вызывает поляризацию молекулы галоида и образование сг-комплекса без участия переносчиков галоида  [c.337]

    Другим подтверждением образования гидратированных электронов служат результаты опытов но выяснению влияния механического перемешивания электролита (см. табл. 2). Увеличение проводимости воды при пропускании переменного тока нри отсутствии перемешивания более сильно проявляется в случае пары электродов Р1 , Р1д, чем нри Р1 , Р1 . Перемешивание снижает величину тока поляризации, особенно при использовании капиллярной трубки, что объясняется существенным нарушением направленной диффузии ионов воды под действием электростатического поля. Пропускание же переменного тока вызывает в этом случае увеличение электропроводности. Следовательно, действие переменного тока заключается не только в увеличении конвективных потоков, как полагают некоторые авторы [9], айв образовании токопроводящих частиц. Увеличение степени диссоциации воды (по результатам опытов с перемешиванием) является маловероятным, так как, согласно табличным данным [10], возрастание эквивалентной электропроводности ионов Н+ и ОН при предельном разбавлении от концентрации 0.0001 происходит всего лишь на 12.5%. В нашем же случае концентрация названных ионов имеет порядок 10 , поэтому увеличение электропроводности вероятнее всего объяснить образованием новых частиц, являющихся переносчиками электричества.  [c.64]

    Некоторые ароматические субстраты, имеющие электронб-донорные заместители, способны сами поляризовать молекулы галогенов, и их можно прогалогенировать, проводя реакцию в отсутствие катализаторов в инертных растворителях (бензол, СС14 и др.). У этих ароматических соединений л-электронная плотность бензольного кольца настолько повышена, что, смещаясь в сторону одного из атомов галогена, она сама вызывает поляризацию молекулы галогена с образованием о-комплекса без участия переносчиков галогена  [c.374]


    Димерная структура фотоактивного Бхл в бактериальных РЦ вызывает интерес исследователей, тем более, что есть указания на подобное устройство первичного донора электрона и у высших растений. Возможно, что такое строение фотоактивного пигмента обеспечивает какие-то определенные преимущества в первичном акте фотосинтеза. Так, высказываются предположения, что димерная структура Р способствует эффективному первичному захвату фотовозбуждения до отрыва электрона и переноса его в цепь переносчиков. Это происходит благодаря сверхбыстрому разделению зарядов в самом димерном комплексе с быстрой (за сотни фемтосекунд) сопутствующей поляризацией ближайшего белкового окружения. Имеются и доводы в пользу прочной стабилизации во времени положительного заряда на Р, образованного при его фотоокислении, в результата делокализации дырки по структуре димера. Это способствует замедлению бесполезных обратных рекомбинационных процессов. Последнему благоприятствует в димере наличие большого числа степеней свободы для небольших структурных изменений, которые сопровождают фоторазделение зарядов (см. гл. XXVHI). [c.311]


Биохимия Том 3 (1980) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Переносчик

Переносчик электронный

Переносчики электронов



© 2025 chem21.info Реклама на сайте