Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия ионная

    Итак, вследствие медленности процесса диффузии ионов для получения хороших осадков приходится проводить электролиз при малых плотностях тока, что значительно замедляет электро- [c.437]

    Другим важным случаем электрохимического разрушения металлов является их коррозия с кислородной деполяризацией. В связи с малой растворимостью кислорода в водных средах, а также в связи с тем, что его коэффициент диф фузии значительно меньше коэффициента диффузии ионов водорода, скорость коррозии с кислородной деполяризацией обычно лимитируется диффузией. На рис. 24.7 в упрощенном виде представлена типичная поляризационная диаграмма процесса коррозии с кислородной деполяризацией. [c.501]


    Коэффициент диффузии D соли можно выразить через подвижности и коэффициенты диффузии ионов, иа которые эта соль диссоциирует  [c.565]

    Положения, относящиеся к диффузии электролитов, не вполне бесспорны, так как обычно принимается, что диффузия иона происходит под воздействием силы, действующей на него и равной градиенту химического потенциала иона. В то же время, как отмечалось выше, диффузия является результатом беспорядочных перемещений, а не направленного движения под действием какой-то силы на диффундирующие молекулы. Поэтому сомнительно рассматривать градиент химического потенциала в качестве силы, движущей ионы через раствор. Однако такими представлениями неизменно пользуются при изучении диффузии электролитов они приводят [c.26]

    Проблемы диффузии ионов уже обсуждались выше (см. раздел 1-2). Бриан и др. вычислили значения коэффициента ускорения для абсорбции газа А, который сам не ионизируется, но взаимодей- [c.72]

    Этот процесс можно рассматривать как диссоциацию молекулы ЗОа на две молекулы продуктов реакции, так как концентрация воды практически постоянна. В таком случае должна соблюдаться нейтральность раствора, поэтому концентрации НЗО и Н+ должны быть одинаковы во всех точках и оба иона будут диффундировать с одной и той же скоростью (о диффузии ионов см. раздел 1-2). [c.131]

    Развитие коррозии обусловлено диффузией ионов железа в газовую среду через поверхностную пленку, которая обогащается серой. При этом вначале образуется нестойкое соединение Ре 2, которое при повышении температуры распадается с выделением элементной серы и значительно более термостойкого FeS. Сульфид железа, покрывая поверхность металла, защищает ее от быстрого разрушения. Термодинамическая возможность существования сульфида железа (а следовательно, и сероводородная коррозия железа) определяется температурой и парциальным давлением сероводорода в газовой среде. [c.148]

    Скорость окисления металла определяется не диффузией ионов через образующееся соединение. Так, сульфидирование никеля N1 + 3 = N 5 приводит к образованию пористой, незащитной пленки, скорость роста которой определяется диссоциацией За. Поэтому добавки Сг и Ag к N1 оказывают влияние, обратное предсказываемому теорией Вагнера— Хауффе. [c.88]

    Диффузия ионов, обусловливающая рост окалины при окислении сплава, осуществляется по вакантным окта- и тетраэдрическим междоузлиям. [c.102]


    Диффузионным потенциалом называется разность потенциалов, возникающая на поверхности раздела между двумя растворами, различающимися или по виду растворенного вещества, или по его концентрации. Эти скачки потенциала невелики они обычно не превышают 0,03 в и могут уменьшаться до нуля. Причиной их служит различие в подвижностях и, следовательно, в скоростях диффузии ионов различного вида. Рассмотрим только простейший случай, когда соприкасающиеся растворы содержат один и тот же электролит и различаются только по его концентрации. Обратимся к цепи (ХП1, 26). [c.438]

    Концентрационная поляризация. Из-за недостаточно быстрого отвода перешедших в раствор ионов металла повышается концентрация этих ионов в прианодной зоне. Более высокая концентрация ионов металла у поверхности анода, чем в растворе, объясняется замедленностью диффузии ионов металла. [c.34]

    Замедленность диффузии ион-атомов металла от поверхности в обьем раствора (концентрационная поляризация). [c.32]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор [c.472]

    Эти весьма интересные соображения не учитывают, однако, того, что переход совершают в одном и том же направлении (из металла в раствор) частицы разного заряда, подобно тому как это происходит при диффузии ионов в растворах электролитов. Поэтому здесь при вэзникновении скачка потенциала может быть достигнуто не равновесное, а стационарное состояние, при котором процесс одностороннего перехода не прекращается, а лишь достигается выравнивание скоростей движения противоположно заряженных частиц, но они ио-прежнему будут переходить из металла в раствор. [c.228]

    Так как коррозия развивается за счет преимущественпой диффузии ионов железа через поверхностную пленку к газообразной среде, то наружный слой этой пленки обогащен серой и состоит из РеЗа- При повышении температуры РеЗа начинает распадаться с выделением элементарной серы и образованней более термостабильного РеЗ. Термодинамическая возможность существования РеЗ (а отсюда, и возможность сероводородной коррозии железа) определяется температурой и парциальным давлением сероводорода в газовой фазе. На рис. 38 показано поле термодинамической невозможности сероводородной коррозии для низколегированных сталей (поле ниже прямой линии). [c.145]

    Для сравнения необходимо оценить величины и >2. Коэффициент диффузии СОг в воде хорошо известен и составляет при 20° С , 7- 0- см /сек. Возникают некоторые осложнения при нахождении >2, потому что диффузия ионов не просто определяется законом Фика, так как поток каждого иона зависит от градиента концентраций всех присутствующих ионов [13]. Учет этого эффекта в химической абсорбции рассматривался Шервудом и Вэйем [14], которые рассчитали градиенты концентраций всех составляющих ионов по графикам профилей концентраций, полученным на основе модели пленочной теории. Найсинг использовал ту же самую методику, но вводил полученные таким образом значения />2 в уравнения пенетрационной теории. При 20° С и конечном разбавлении величина Лг составляет 2,84 0 см /сек, для растворов ЫаОН и 2,76 0 см /сек для растворов КОН. Обе величины почти одинаковы, таким образом можно сказать, что как для раствора ЫаОН, так и для раствора КОН (01/02) = 0,77, а Ог/Д = 0,64. Хотя обе величины были рассчитаны и при бесконечном разбавлении, однако влияние ионной силы на отношение г//)] предполагается небольшим. При сравнении этих величин с рассчитанными по уравнениям (12.5) и (12.6) отмечается полное согласование экспериментальных и теоретических данных. [c.140]

    Важным следствием соотношения взаимности Онзагера является то, что в результате действия одной обобщенной силы появляются другие возможные в данной системе силы. Так, наличие в газовой смеси температурного градиента ведет к образованию градиента концентрации (термодиффузия, эффект Соре) и градиента давления. Обратно, наличие градиента концентрации вызывает появление температурного градиента (диффузионный термоэффект Дюфура— Клузиуса). Аналогичным образом наложение температурного градиента па проводник, по которому течет электрический ток, вызывает появление дополнительного градиента потенциала (явление Томсона). Таково же появление диффузионного скачка потенциала при диффузии ионов в электролитах и т. д. [c.113]


    Любая гальваническая цйяь в целом никогда не находится 1) равновесии. В необратимом элементе обычно возможно протекание химической реакции и при разомкнутой внешней цепи (реакция 2п + Н2504 в элементе Вольта). Но и обратимая (в указанном выше смысле) цепь в целом далека от термодинамического равновесия. Если такую цепь замкнуть на конечное сопротивление и предоставить самой себе, то во внешней цепи возникает электрический ток измеримой силы, т. е. цепь совершает работу, необратимо приближаясь к равновесию. Разомкнутая цепь только временно сохраняется почти неизменной. Например, в разомкнутом элементе Даниэля — Якоби происходит диффузия ионов Си2+ через раствор к цинковому электроду при соприкосновении цинкового электрода с ионами меди происходит необратимая (без совершения работы) реакция вытеснения ионов Сц2+ из раствора металлическим цинком, т. е. та же реакция, которая служит источником тока при работе с лемента. [c.519]

    Механизм возникновения диффузионного иотенциала связан с диффузией ионов соли в растворе против градиента ко1щен-трации. Между коэффициентом диффузии D,- иоиа и io подвижностью Ui существует соотнощение, которое было впервые выведено Нернстом  [c.565]

    Скорость электрохимического процесса зависит от э, д. с., т. е. от разности потенциалов между электродами, и существенно зависит от условий диффузии нонов. Аналогично, скорость отдельного электродного процесса должна зависеть от г отенциа-ла электрода. Определяющее влияние на скорость г>лектрод-ного процесса часто оказывает диффузия ионов. [c.607]

    Химический потенциал для каждого индивидуального иона составляет ц/N (N — число Авогадро), а силы воздействия градиента химического потенциала на положительные и отрицательные ионы, выраженные в дж1см, равны соответственно — IN)/ d i+ldx) и — Ш)1(дц-1дх). Разделение зарядов, возникающее из-за различия коэффициентов диффузии ионов, приводит к созданию градиента потенциала Е, который действует на элементарный заряд е иона с силой Ее. Следовательно, общие силы (в дж1см), действующие на ионы, выражаются так  [c.27]

    Случай, когда ионизированы как продукты реакции, так и сам реагент, рассмотрен Шервудом и Уаем на основе пленочной модели. Авторы учли влияние неодинаковости коэффициентов диффузии ионов на скорость абсорбции, используя уравнение Винограда и Мак Бэйна приведенное выше в разделе 1-2-2. [c.143]

    Опубликовано достаточно много результатов экспериментальных измерений скорости абсорбции СОа растворами NaOH и КОН в условиях, при которых раствор мог считаться неподвижным и имеющим бесконечную глубину, а значит, выражения, выведенные в главе П1, должны были быть справедливыми. Конечно, невозможно прямым путем измерить растворимости и коэффициенты диффузии СОа в растворах КОН или NaOH. Кроме того, реагентом является ион ОН , что выдвигает некоторые проблемы, связанные с диффузией ионов в растворе (см. раздел 1-2). [c.239]

    Однако не вызывает сомнений, что результаты различных экспериментальных работ, выполненных, например, Данквертсом и Кеннеди Найсингом и др. , Хикита и Асаи подтверждают теорию, изложенную в главе HI, при условии, что растворимость и коэ и-циенты диффузии СОа определены методами, описанными в главе I, а для константы скорости реакции учтено влияние ионной силы (например, с помощью графика, приводимого Данквертсом и Шарма ). Значения коэффициента диффузии иона гидроксила, наилучшим образом соответствующие результатам опытов, примерно в 1,7—2,1 раза больше, чем для СОа- [c.239]

    Наблюдения показывают, что ни ZnS04, ни медный стержень не являются обязательной составной частью подобного элемента. Металлическая медь осаждается на катоде из любого другого хорошего проводника, например на платиновой проволоке, а раствор сульфата цинка в анодном отделении можно заменить любой другой проводящей солью, которая не реагирует с цинковым анодом, как, например, хлорид натрия. Пористая перегородка оказывает значительное сопротивление диффузии ионов и поэтому создает довольно высокое электрическое сопротивление, препятствующее получению сильного тока от элемента. Лучший метод заключается в использовании соляного мостика, который представляет собой стеклянную U-образную трубку, содержащую какой-либо электролит типа KNO3, смешанный с агар-агаром или желатиной, чтобы удержать электролит в трубке (рис. 19-4,6). [c.164]

    Механизм, который предложили Кабрера и Мотт (]949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом. [c.48]

    Мровец и Бербер выдвинули гипогезу, объясняющую формирование двухслойной однофазной окалины только путем односторонней диффузии ионов металла к наружной поверхности окалины при непременном условии образования микропустот на границе раздела металл—окалина. При этом следует различать две стадии Б образовании окалины. [c.74]

    Диффузии ионов никеля (г,- = 0,78 А) через эту шпинель, в то время как испарение СГ2О3 с поверхности окалины создает градиент концентрации ионов Сг ,. что приводит к их диффузии (г,- = = 0,64 А) через шпинель, но с очень малой скоростью. [c.103]

    Заждленность диффузии ионов металла от поверхности в объем раствора приводит к возникновению концентрационной поляризации анода (ДУа)конц. которая сравнительно невелика [пологая кривая, аналогичная кривой (Уме)обр на рис. 137) ], кроме случаев большой активности ионов металла у поверхности. [c.196]

    Основными факторами, снижающими эффективность диализа (и электродиализа), являеотся обратная диффузия ионов через [c.534]

    Процесс коррозиониого разрушения поверхности металла в этом случае аналогичен химическому процессу роста пленок окисла иа иоверхности металла. Механизм такой коррозии в общем случае может быть объяснен рассмотренным в гл. IX процессом диффузии ионов металла и электронов сквозь илепку и атомов и.тн иоиов кислорода с поверхности пленкн в металл. [c.176]

    Процесс ионообмена включает диффузию ионов растворенного электролита внутрь структуры ионита, вытеснение подвижных ионов из ячеек решетки и диффузию вытесненных ионов в раствор. Этот процесс можно осуществлять в статических и динамических условиях. В статических условиях масло, содержащее загрязнения в виде раствора электролита, перемешивают с ионитом, применяемым в виде зерен диаметром 0,3—2,0 мм. В результате ионообмена активные группы ионита переходят в стабильную солевую форму, не склонную к гидролизу при промывке. При динамическом методе очистки ионообмен происходит в колонке, заполненной ионитом, при пропускании через нее загрязненного масла. [c.125]

    Замедленность анодной реакции коррозии и диффузии ионов металла из-за образовашя анодных пассивных пленон. [c.32]

    Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на эксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцениЕ в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000°С. [c.14]


Смотреть страницы где упоминается термин Диффузия ионная: [c.428]    [c.176]    [c.305]    [c.157]    [c.552]    [c.569]    [c.609]    [c.87]    [c.78]    [c.65]    [c.347]    [c.379]    [c.394]    [c.433]    [c.433]    [c.501]    [c.501]   
Справочник инженера - химика том первый (1969) -- [ c.543 ]




ПОИСК







© 2025 chem21.info Реклама на сайте