Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

электронного транспорта

    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]


    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]

    Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д. [c.97]

    Фотохимические процессы и пути электронного транспорта. Фотофосфорилирование [c.279]

    Обработка водным раствором гидропероксида трет-Ьуп па, по данным Грибовой и Антоновского, подавляет электронный транспорт в хло-ропластах и угнетает рост проростков пщеницы только при концентрациях -10 -10 М и выше, т. е. пероксид действует значительно слабее типичных гербицидов [117, с. 26]. [c.37]


    Важная роль кофермента Ою в процессе электронного транспорта вытекает из того, что он находится в точке разветвления цепи переноса электронов. Как видно из рис. 23-2, Корю передает кислороду электроны от двух [c.312]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Установлены также изменения pH, обусловленные электронным транспортом. При освещении хлоропластов внутри тилакоидов может происходить накопление протонов и понижение pH. Отношение числа поглощенных протонов к числу перенесенных электронов равно двум. [c.460]

    Вещества, ингибирующие электронный транспорт, как следствие ингибируют также окислительное фосфорилирование, фотосинтез и фотофосфорилирование. Некоторые вещества (например, динитрофенол), которые разобщают или ингибируют фосфорилирование или ингибируют стадию выделения кислорода в процессе фотосинтеза, могут не оказывать влияния на электронный транспорт или даже стимулировать его. [c.251]

    К Ре8-белкам относится группа белков, участвующих в процессах электронного транспорта (ферредоксины), и ряд ферментов, катализирующих окислительно-восстановительные реакции. Установлено, что Ре8-белки являются ключевыми в таких важных клеточных процессах, как фотосинтез, дыхание, азотфиксация, фиксация СО2. [c.232]

    Гем-энзимы играют буквально выдающуюся роль в химии живых организмов. В их функции входят перенос электрона, транспорт 0 , активация 0 и HjGj. Последние две функции связаны с несколькими видами ок-сидоредуктаз оксидаз, оксигеназ, пе-роксидаз и каталаз. Основные представители этого класса энзимов и реакции, ими катализируемые, представлены в табл. 13.5. [c.362]

    В 40-50-х гг. М. Калвин, используя изотоп С, выявил механизм фиксации СО2. Д. Арнон (1954) открыл фотофос-ф( илирование (инициируемый светом синтез АТФ из АДФ и Н3РО4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. Р. Эмерсон и Ч.М. Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при Х>700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неадцитивное [c.179]

Рис. 7.8-13. Схематическое изображение цепи электронного транспорта фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью сокращенных названий или в виде темных кружков. Рис. 7.8-13. Схематическое изображение <a href="/info/169405">цепи электронного транспорта</a> фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью <a href="/info/1531970">сокращенных названий</a> или в виде темных кружков.
    Фотосинтез можно определить как процесс фотоиндуцирован-ного электронного транспорта, конечным результатом которого является усвоение СО2. Скорость фотосинтеза зависит от интен- сивности падающего света I. Грубо говоря, скорость образования некоего субстрата пропорциональна числу поглощенных квантов. Этот неустойчивый субстрат преобразуется далее в ферментативных процессах. Опыт показывает, что для продукции одной молекулы О2 нужно и 8 молекул субстрата. Па один ферментативный комплекс или на одну молекулу обобщенного фермента (фотосинтетическая единица) приходится около 300 молекул хлорофилла (50 в фотосинтезирующих бактериях). [c.448]

    Теория Митчелла получила ряд качественных подтверждений. Либерман и его сотрудники изучили транспорт ионов через искусственные фосфолипидные мембраны. В присутствии синтетических ионов, с зарядом, экранированным гидрофобными заместителями, например тетрабутиламмония N [(СПг)зСПз] 4 или тетрафенилбората В (СвП5)4, существенно повышается электропроводность системы. Эти ионы быстро диффундируют сквозь мембраны. Был изучен транспорт этих ионов через митохондриальные мембраны (ММ) и субмитохондриальные частицы (СМЧ), полученные путем обработки митохондрий ультразвуком. ММ и СМЧ оказываются ориентированными противоположным образом. Цитохром с локализован на внешней стороне ММ и на внутренней стороне мембраны СМЧ. Можно думать, что внутри-митохондриальное пространство заряжено отрицательно, а внутреннее пространство СМЧ — положительно. Энергизация СМЧ добавкой АТФ вызывает поглощение синтетических анионов, а деэнергизация ингибитором дыхания (актиномицином) или разобщителем окислительного фосфорилирования (производное фенилгидразона) вызывает выход анионов. Транспорт электронов в мембранах СМЧ сопровождается поглощением синтетических анионов. В свою очередь их транспорт нарушается ингибиторами электронного транспорта и разобщителями окислительного фосфорилирования. [c.436]


    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

Рис. 13.10. Энергетическая схема электронного транспорта в митохондриях ФМН — фла-винмононуклеотид, Рис. 13.10. Энергетическая <a href="/info/191226">схема электронного транспорта</a> в митохондриях ФМН — фла-винмононуклеотид,
    На основе теории релаксационных конформационных переходов Блюменфельд в последние годы провел экспериментальные исследования синтеза АТФ в биологических мембранах — как в митохондриях, так и в тилакоидах (см. гл. 14). Показано, что АТФ синтезируется из АДФ и фосфата при скачкообразном повышении pH среды от 5 до 9. Это можно трактовать не как результат создания трансмембранного градиента pH, а как следствие возникновения неравновесных состояний АТФ-азы и других белков в цепях электронного транспорта н/или целой тила-копдной мембраны благодаря диссоциации определенных кислот- [c.440]

    Фелиига на хол., легко окисл. мноп<-ми окислителями. Водн. раств. уст. только в отсутствие Oj. На возд. водн. раств. уст. при pH 5 6 о, неуст. при щел. pH окисл. катализируют Си и Fe ( u > Fe). Использ. как донор И в биол. системах при изучении электронного транспорта и для защиты др. легко окисляющихся в-в, напр, тетра-гидроптероилглутамата. [c.100]

    Бесцв. крист. Раств-сть Aj х.р. ац., эф., ЕЮН почти н.р. Н О A3 х.р. ац., H I3 р. ЕЮН, МеОН почти н.р. Н2О. Специфично ингибирует электронный транспорт между цито-хромами Ь и с, при 0,5 мкМ ингибирует на 50%. Антимицин состоит из [c.252]

    Иглоподобные крист. г 190 -ь 191. рК 4,89. Раств-сть 0,008 Н О р. ЕЮН, эф. м. р. хол. Петр. эф. Действует при концентрации 2 мкМ и pH 6 [EJB 21, 565 (1971)]. При 10 М сильный ингибитор электронного транспорта. Для крыс (перорально) ЛД50 0,2 г/кг. Использ. как доурожайный дефолиапт, гербицид общего действия. [c.258]

    Основной простетической группой, входящей в состав большинства протеинов и обнаруживающей при этом большое число парамагнитных взаимодействий, является порфирин и его производные. Порфирин образует хелатные комплексы с ионами металлов, такими, как железо, магний, цинк, никель, кобальт, медь и редкоземельные элементы. Важнейшим среди них является комплекс с железом - гем, который участвует не только в связывании с кислородом при образовании гемоглобина, но принимает участие также и в других реакциях, таких, как электронный транспорт цитохрома, в каталитических реакциях превращения Н2О2 или в реакциях оксидирования кислот жирного ряда в процессах, катализируемых присутствием пе-роксидазы. В этих комплексах ион железа в зависимости от стадии окисления или типа лигандов может быть либо диамагнитным, либо парамагнитным. Следовательно, имеются природные диамагнитные и парамагнитные комплексы одной и той же молекулы, при этом параметры ЯМР-спектров этих [c.122]

    Комплексы циклических политиаэфиров с СиЦО рассматриваются как модели медьсодержащих, так называемых "голубых" белков [295, 296]. Медьсодержащий белок, который для живых организмов является важным металлсодержащим ферментом, аналогом железосодержащих белков, участвует в переносе электронов, транспорте кислорода, окислительно-восстано- [c.192]

Рис. 7.10. Синтез АТР как обратимый протонный насос. Согласно Митче.ч-лу, во время окислительного электронного транспорта протоны проникают через мембрану. Созданный градиент pH и мембранный потенциал способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.) Рис. 7.10. Синтез АТР как обратимый <a href="/info/187775">протонный насос</a>. Согласно Митче.ч-лу, во время окислительного электронного транспорта протоны проникают через мембрану. <a href="/info/1897120">Созданный градиент</a> pH и <a href="/info/4419">мембранный потенциал</a> способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.)
    Циклическим электронным транспортом у фотосинтезирующих эубактерий не исчерпываются все возможные пути переноса электронов. Электрон, оторванный от первичного донора реакционного центра, может по цепи, состоящей из других переносчиков, не возвращаться к молекуле хлорофилла, а передаваться на такие клеточные метаболиты, как НАД(Ф)" или окисленный ферредоксин, которые используются в реакциях, требующих восстановителя. Таким образом, электрон, покинувший молекулу хлорофилла, выводится из системы . Возникает однонаправленный незамкнутый электронный поток, получивший название нециклического пути переноса электронов. У пурпурных и зеленых нитчатых бактерий функционирует только циклический светозависимый поток электронов. У остальных групп эубактерий фото-индуцируется как циклический, так и нециклический перенос электронов, при этом у зеленых серобактерий и гелиобактерий оба пути электронного транспорта связаны с функционированием одной фотосистемы, а у цианобактерий и прохлорофит циклический перенос электронов зависит от активности фотосистемы I, а для нециклического потока электронов необходимо функционирование обеих фотосистем. Поток электронов по цепи переносчиков на определенных этапах сопряжен с направленным перемещением протонов через мембрану, что приводит к созданию протонного градиента, используемого для синтеза АТФ. [c.281]

    Фосфорилирование, сопряженное с циклическим потоком электронов, получило название циклического фотофосфор и лирования. Соответственно, нециклическим фо-тофосфорилированием называют синтез АТФ, сопряженный с нециклическим электронным транспортом. [c.281]


Смотреть страницы где упоминается термин электронного транспорта: [c.214]    [c.34]    [c.224]    [c.190]    [c.332]    [c.358]    [c.441]    [c.255]    [c.256]    [c.256]    [c.259]    [c.224]    [c.181]    [c.50]    [c.88]   
Биохимия Том 3 (1980) -- [ c.399 ]




ПОИСК







© 2025 chem21.info Реклама на сайте