Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень энергетические затраты

    В печени гликоген играет роль буфера глюкозы, циркулирующей в крови и являющейся главным энергетическим ресурсом всех клеток организма. Концентрация глюкозы Б плазме крови должна поддерживаться постоянной падение ее ниже нормы приводит к голоданию клеток и оказывается гибельным для тех из них, которые неспособны создавать собственные энергетические резервы (каковы, например, клетки головного мозга), а превышение ведет к резким биохимическим сдвигам в клетках, и также особенно опасно для клеток мозга. Между тем и расходование глюкозы плазмы, и ее поступление подвержены резким колебаниям, Например, при переходе от покоя к активной деятельности убыль глюкозы скачкообразно возрастает, а при переваривании пищи, особенно углеводной, в кровь быстро поступают значительные количества глюкозы. Таким образом, понятно, что организм должен располагать быстродействующими и легко управляемыми механизмами биосинтеза гликогена (депонирование избыточной глюкозы плазмы) и его расщепления (компенсация энергетических затрат). На примере расщепления гликогена удобно проследить связь его структуры с выполняемой функцией. [c.143]


    Жиры выполняют в организме различные функции при сгорании 1 г жира выделяется 39,3 кДж, поэтому при недостатке углеводов жиры восполняют энергетические затраты организма. Жиры предохраняют организм от тепловых потерь, так как являются плохим проводником тепла. Часть жира используется для построения клеток (структурный жир), часть откладывается в виде запасного резервного вещества (резервный жир). Жир защищает некоторые органы (например, печень) от толчков, так как он обладает определенной упругостью. [c.138]

    Когда в качестве дыхательного субстрата используются липиды, они сначала гидролизуются до глицерола и жирных кислот, после чего от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты, так что на каждом этапе эта длинная молекула укорачивается на два атома углерода. Двууглеродная ацетильная группа соединяется с коферментом А и образовавшийся ацетил-КоА вступает, как обьгано, в цикл Кребса. Из каждой молекулы жирной кислоты извлекается большое количество энергии при окислении стеариновой кислоты, например, выход АТФ составляет 147 молекул. Неудивительно поэтому, что жирные кислоты — важный источник энергии. Около половины обьганых энергетических затрат сердечной мышцы, скелетных мышц (в покое), почек и печени покрывается именно за счет окисления жирных кислот. [c.350]

    Энергетическое обеспечение работы в зоне субмаксимальной мощности осуществляется в основном за счет анаэробного гликолиза, что приводит к большому накоплению молочной кислоты в крови (концентрация ее может достигать 2,5 г л и более). Кислородный запрос при такой работе может достигать 20—40 л, а уровень энергетических затрат может в 4—5 раз превышать максимум аэробного механизма энергообразования. К концу работы возрастает доля аэробных реакций в ее энергообеспечении. Кислородный долг в этой зоне мощности наиболее значителен по абсолютным значениям (до 20 л) и составляет 50—90 % кислородного запроса. Усиливается мобилизация гликогена печени, уровень глюкозы в крови может достигать 2 г л Под влиянием продуктов анаэробного распада увеличивается проницаемость клеточных мембран для белков, что приводит к увеличению их содержания в крови и появлению в моче, где их концентрация достигает 1,5 %. [c.347]

    При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]


    Важно подчеркнуть, что, хотя известные нам обходные пути приводят в физиологическом смысле к обращению прямых гликолитических реакций, в химическом отношении это, конечно, совершенно разные реакции. При этом существование, например, фруктозодифосфатазы и фосфофруктокиназы в одном и том же компартменте клетки создает здесь потенциальную возможность короткого замыкания как в обмене углеродсодержащих соединений, так и в энергетическом обмене одновременное функционирование обоих ферментов приводило бы к бесполезной циркуляции углерода с затратой АТФ. Очевидно, что в тканях, осуществляющих глюконеогенез, регуляция активности этих двух ферментов должна быть тесно интегрирована. Совершенно аналогичная проблема замыкания возникает всегда и везде, если два противоположно направленных пути реакций оказываются в одной клетке. Взаимопревращения глюкоза глюкозо-6-фосфат и фосфоеиолпируват пируват — вот еще два примера той же проблемы замыкания обмена углерода и энергии в таких тканях, как печень и почка. Все подобные проблемы разрешаются в принципе одинаково внутриклеточные условия, благоприятствующие катализу в катаболиче-ском направлении, весьма неблагоприятны для катализа в анаболическом направлении, и наоборот. [c.55]


Смотреть страницы где упоминается термин Печень энергетические затраты: [c.59]   
Биология Том3 Изд3 (2004) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Затраты

Энергетические затраты



© 2025 chem21.info Реклама на сайте