Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточные мембраны, проницаемость

    Стехиометрические соотношения в натрий-калиевом насосе весьма своеобразны. При распаде каждой молекулы АТР из клетки выкачиваются 3 иона натрия, а извне в клетку накачиваются 2 иона калия. Поскольку из клетки выкачивается больше положительно заряженных ионов, чем пО падает в нее, внутри клетки создается избыточный отрицательный заряд. Наличие отрицательного заряда внутри клетки было установлено уже давно путем измерения электрического мембранного потенциала (разд. Б.З). Поскольку клеточная мембрана все же проницаема для ионов К+, возникновение мембранного потенциала приводит к диффузии этих ионов через мембрану внутрь клетки, что обусловливает частичную нейтрализацию отрицательно-го заряда на мембране. Когда скорость пассивной диффузии уравновешивает мем бран- [c.363]


    Открытие ионных каналов — это, однако, не единственный ответ на связывание медиатора. В рецепторах катехоламина, например, первичный ответ состоит в продуцировании вторичного мессенджера сАМР, который с помощью протеинкиназы регулирует не только ионную проницаемость возбудимых мембран, но также энергию метаболизма и биосинтез белка в клетке. Рецепторы, определяемые как молекулы, связывающие эндогенные лиганды, являются в действительности компонентами мембранных комплексов, состоящих из молекул разных видов одни из них связывают лиганды, а другие функционально активны в мембране. Способ, с помощью которого регулируется ионная проницаемость клеточной мембраны, можно рассмотреть на примере модели, разработанной для аксональных ионных каналов (гл. 6). [c.243]

    Термин мембранао используется вот уже более 100 лет для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клеткн н внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и некоторые из растворенных в ней веществ. В 1851 г. немецким физиолог X. фон Моль описал плазмолиз клеток растений, предположив, что клеточные стенки функционируют как мембраны. В 1855 г. ботаник К. фон Негели наблюдал различия в проникновении пигментов в поврежденные н неповрежденные растительные клетки и исследовал клеточную границу, которой он дал название плазматическая мембрана. Он предположил, что клеточная граница ответственна за осмотические свойства клеток. В 1877 г. немецкий ботаник В. Пфеффер опубликовал свой труд Исследование осмоса , где постулировал существование клеточных мембран, основываясь на сходстве между клетками и осмометрами, имевэщими искусственные полупроницаемые мембраны. В 80-х годах прошлого столетия датский ботаник X. де Фриз продолжил осмометрические исследования растительных клеток, предположив, что неповрежденный слой протоплазмы между плазмалеммой и тонопластом функционирует как мембрана. Его исследования послужили фундаментом при создании физико-химических теорий осмотического давления и электролитической диссоциации голландцем Я. Вант-Гоффом и шведским ученым С. Аррениусом. В 1890 г. немецкий физикохимик и философ В. Оствальд обратил внимание на возможную роль мембран в биоэлектрических процессах. Между 1895 и 1902 годами Э. Овертон измерил проницаемость клеточной мембраны для большого числа соединений и наглядно показал зависимость между растворимостью этих соединений в липидах и способностью их проникать через мембраны. Он предположил, что мембрана имеет липидную природу и содержит холестерин и другие липиды. Современные представления о строении мембран как подвижных липопротеиновых ансамблей были сформулированы в начале 70-х годов нашего столетня. [c.549]


    Химический состав клеточной стенки микроорганизмов различных групп неодинаков. Он изменяется и в зависимости от условий культивирования. Механически и химически клеточная стенка является очень прочным образованием. Она сохраняет форму клетки и поддерживает нужное осмотическое давление в ней, а также принимает участие в транспорте веществ. В отличие от цитоплазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.15]

    Рассмотрим химические основы возникновения и поддержания биоэлектрических потенциалов (потенциала покоя и потенциала действия). Большинство исследователей придерживаются мнения, что явления электрической поляризации клетки обусловлены неравномерным распределением ионов К и Ма по обе стороны клеточной мембраны. Мембрана обладает избирательной проницаемостью большей для ионов К и значительно меньшей для ионов Ка. Кроме того, в нервных клетках существует механизм, который поддерживает внутриклеточное содержание натрия на низком уровне вопреки градиенту концентрации. Этот механизм получил название натриевого насоса. [c.636]

    Анализ клеточного цикла в последние годы значительно упростился благодаря использованию детища современной электроники-флуоресцентного анализатора клеток. В этом сложном приборе клеточную суспензию пропускают через узкое отверстие со скоростью нескольких тысяч клеток в секунду, и оптические измерения производятся для каждой отдельной клетки, проходящей мимо маленького окошечка (см. ра щ. 4.3.1). При анализе асинхронной клеточной популяции клетки обрабатывают фиксатором, что приводит к остановке деления и делает клеточные мембраны проницаемыми. Затем клетки обрабатывают красителем, который может флуоресцировать лишь будучи связанным с ДНК. Интенсивность флуоресценции окрашенных таким [c.144]

    В основе сложных патологических механизмов отравления змеиными ядами лежит процесс повреждения клеток организма и субклеточных структур. Известно, что функциональная целостность клеточных мембран являет ся одним из ведущих ф акторов, обеспечивающих нормальную жизнедеятельность клеток, тканей, органов и целостного организма. В змеиных ядах содержатся компоненты, активно воздействующие на клеточные мембраны и приводящие к развитию целого ряда патофизиологических реакций (гемолиз, изменение проницаемости [c.73]

    Рассматривая доннановское равновесие, мы считали систему идеальной. Живая клетка и ее поверхностная мембрана, конечно, такими системами не являются. Недиффундирующий анион в данном случае представлен различными боковыми анионными группировками белков и других макромолекул. Клеточная мембрана проницаема в той или иной степени для многих ионов и молекул лекарственных средств. Закономерности, полученные Доннаном, несомненно, играют важную роль в регуляции распределения лекарств в живых клетках, однако на это распределение влияют и определенные неравновесные механизмы. [c.27]

    Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2—4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает вьщеление аминокислот в среду. [c.45]

    Если на каком-нибудь участке мембраны проницаемость для ионов натрия увеличивается, то эти ионы устремляются внутрь клетки, нейтрализуя ее отрицательный заряд. Клеточная мембрана при этом деполяризуется. При деполяризации по поверхности мембраны распространяется затухающий электрический сигнал, аналогично тому как это имеет место при прохождении тока по коаксиальному кабелю Считают, что включение нервного импульса часто связано с локальным увеличением проницаемости мембраны для ионов натрия. В этом процессе могут играть определенную роль также и другие ионы, в частности Са +. Пассивное распространение электрических сигналов, обусловленное локальной деполяризацией мембраны, происходит, однако, только в случае очень коротких нервных клеток на длинные расстояния этим способом сигнал распространяться не может. В большинстве аксонов нервных клеток используется более эффективный способ проведения импульса, основанный на развитии потенциала действия. Потенциал действия — это импульс, проходящий вдоль аксона и специфически изменяющий за доли секунды (в нервах млекопитающих приблизительно за 0,5 мс) мембранный потенциал (рис. 5-6). Исходный отрицательный потенциал - 50—70 мВ быстро падает до нуля, затем достигает положительного значения 40—50 мВ, после чего снова устанавливается потенциал покоя. Поразительная особенность потенциала действия состоит в том, что он распространяется вдоль аксонов со скоростью 1 —100 м/с без снижения интенсивности. [c.370]


    Как происходит распространение возбуждения по нерву, известно довольно хорошо. Однако до сих пор не выяснен в деталях механизм процесса первичного возбуждения. Мы знаем, что этот механизм включает местную деполяризацию клеточной мембраны, но каким образом она происходит, пока не ясно. В некоторых случаях причиной может быть механический прогиб, изменяюш,ий проницаемость мембраны по отношению к ионам. (Возможно, что именно так возникает возбуждение в органах слуха и осязания.) В других случаях деполяризация может быть вызвана непосредственным химическим действием посторонних веществ на оболочку нервной клетки, например при попадании соли в рану. Что же касается запаха, то мы просто не знаем, какое именно свойство молекул пахучего вещества вызывает нервный импульс ясно только, что это каким-то образом происходит. В дальнейшем мы рассмотрим некоторые современные гипотезы, которые, к сожалению, пока еще остаются только гипотезами... [c.118]

    Механизм действия местных анестетиков, однако, более сложен, чем может показаться из этих опытов. Так, например, в мембранах аксонов натриевая проницаемость блокируется селективно. Различные механизмы местной анестезии обсуждаются в гл. 6. Здесь же отметим, что в общем имеются достаточные доказательства связи между эффективностью этих препаратов и их влиянием на текучесть мембран. При действии местных анестетиков увеличивается, например, агглютинация клеток млекопитающих лектинами растений [10], что опять-таки подтверждает связь их действия с текучестью клеточной мембраны. [c.74]

    Аналогичным образом поглощение белков происходит, очевидно, лишь при наличии на поверхности клеточной мембраны специфического рецептора. Этот рецептор так изменяет локальную проницаемость мембраны, что через нее могут проходить даже крупные молекулы. [c.66]

    Клеточная стенка у бактерий не жесткая, как стальной панцирь, а тонкая и эластичная, как кожаная покрышка футбольного мяча. Подобно тому как мячу придает упругость надутая камера, клеточной стенке придает определенную упругость плотно прилегающий к ней изнутри протопласт. Внутреннее давление (тургор) обусловлено осмотическими факторами. Осмотическим барьером служит плазматическая мембрана она полупроницаема и контролирует проникновение в клетку и выход из нее растворенных веществ, В отличие от плазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.50]

    Проницаемость клеточной мембраны — важный фактор, который необходимо учитывать при исследовании ростовых процессов и обмена веществ вообще. Этот фактор, однако, исключительно трудно измерить с достаточной степенью достоверности прежде всего потому, что на самом деле существуют два независимых коэффициента проводимости. Один — это коэффициент самодиффузии, т. е. скорость диффузии воды через мембрану в отсутствие градиента потенциала воды. Измеряется эта величина, например, с помощью дейтерированной воды и обозначается через Вт- Другой — это коэффициент скорости движения воды через мембрану нод влиянием градиента потенциала воды [величина Въ в уравнении (7)]. [c.515]

    Функции стероидных гормонов необычайно разнообразны. Их влияние обнаруживается практически во всех биохимических системах организма. Стероидные гормоны включаются в клеточные мембраны, изменяя их проницаемость, способствуют разделению цепей ДНК в процессе образования РНК (транскрипции), повышают активность ферментов, участвующих в синтезе белка, регулируют перенос аминокислот т-РНК и т. д. [c.153]

    Уравнение равновесного мембранного потенциала уравнение Нернстд). Если клеточная мембрана проницаема для какого-либо одного иона (обычно она хорошо проницаема для К+, иногда для С1"), то на мембране ус-ганавливается равновесный так называемый нернстовский потенциал фм, определяемый как разность (фг — ф1>. В водной среде по обе стороны мембраны для иона = = Ио2 и в равновесии  [c.15]

    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Однако клеточные мембраны проницаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, назьюаемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лишь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в одном-единственном гене приводят к исчезновению у бактерий способности транспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цисгтнурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистинав моче, что приводит к образованию цистиновых камней в почках. [c.381]

    Н. действует против патогенных грибов, особенно грибов рода andida. В отношении бактерА неактивен. Механизм противогрибкового действия И. объясняется избират. гидрофобным связыванием со стеринами мембран грибковых клеток. Это сопровождается нарушением мембранной проницаемости, потерей клеткой низкомол. в-в (в Частности, коферментов) и белков, что приводит к йарушенню процессов синтеза в клетке и ее гибели. Избирательность действия полиеновых антибиотиков связывают с тем, что клеточные мембраны грибов, в отличие от клеточных мембран млекопитающих, содержат преим. эргостерин, а не холестерин. [c.254]

    Как осуществляется такое напряжение, в принципе верно объяснил еще в 1912 г. Бернштейн, ученик основоположника электрофизиологии Дюбуа-Реймона. По мнению Бернштейна, клеточная мембрана электрических пластинок, филогенетически происшедших от мышечного волокна, как и клеточные мембраны мышечной ткани, должна обладать избирательной проницаемостью для ионов К+, но не для ионов Ыа+. Между более высокой концентрацией с внутренней стороны и более низкой концентрацией Ыа+ с внешней стороны пластинки возникает потенциал покоя, причем, согласно ряду напряжения, внутренняя сторона становится электроотрицательной. При раздражении, происходящем вследствие нервного нмпульса, изменяется проницаемость мембран и они начинают пропускать ионы, а следовательно, и ток. Как недавно показали измерения Ходчкина с сотрудниками, поляризация при разрядке не только доходит до точки компенсации исходной [c.463]

    Согласно данным Роуселла и Леонарда [281], монокремневая кислота не оказывает никакого действия на ферменты. Мономер кремнезема при проникновении в клетки печени не взаимодействовал с ферментами и не блокировал клеточные мембраны, которые сохраняли нормальную проницаемость по отношению к ионам и к небольшим молекулам, например молекулам ацетата или мочевины. [c.1061]

    Каждая клетка в организме млекопитающих содержит холестерин. Находясь в составе мембран клеток, неэтерифицированный холестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. В цитоплазме холестерин находится преимущественно в виде эфиров с жирными кислотами, образующих мелкие капли—так называемые вакуоли. В плазме крови как неэтерифицированный, так и этерифицированный холестерин транспортируется в составе липопротеинов. [c.202]

    Синтезированы разнообразные 0-замеш.енные производные тиамннди-сульфида и асимметричные дисульфидные производные тиамина. Как правило, соедииеиия такого типа показали значительные преимущества перед тиамином — они обладали пролонгированным действием и не разрушались тиаминазой. Легкая проницаемость через клеточные мембраны [761, сродство к тканям [77] и быстрая рециклизация в тиамин [76, 78] определяют высокую физиологическую активность многих из этих соединений. [c.383]

    Недавно Кюн показал, что светоактивированный родопсин (идентичный метародопсину II) непосредственно взаимодействует с трансдуцином, образуя короткоживущий комплекс. Следовательно, запуск ферментативного каскада происходит непосредственно под действием активированного светом родопсина. Более того, внутриклеточная микроинъекция активированного трансдуцина в палочки моделирует действие света, т. е. гипер-поляризует клетки. Это свидетельствует о том, что активация каскада ферментов, участвующих в разложении GMP, играет основную роль в процессах преобразования света. Менее ясно, как взаимосвязаны светозависимые изменения метаболизма GMP и концентрации Са + и что за механизм или вещество регулирует в конечном итоге светозависимую проницаемость клеточной мембраны палочек. [c.18]

    Связывание ацетилхолина с мускариновыми рецепторами сопровождается увеличением концентрации циклических нуклеотидов, а взаимодействие с никотиновыми рецепторами приводит к открытию ионных каналов и соответственно изменению ионной проницаемости постсинаптической мембраны. Как следствие происходит деполяризация клеточной мембраны за счет быстрого входа ионов натрия, что в конечном итоге ведет к возбуждению мышечной клетки. Следовательно, биологическая функция никотинового ацетилхолинового рецептора заключается в изменении ионной проницаемости постсинаптической мембраны в ответ на связывание ацетилхолина. После зтого ацетилхолин гидрюлизуется ацетилхолинэсте-разой до холина и рецептор переходит в исходное состояние, [c.628]

    Клеточные мембраны у всех организмов проявляют полифун-кциональные свойства осморегуляция, барьерные функции с селективной проницаемостью за счет пор, насосов, рецепторов, транспорт веществ (в том числе активный с затратой энергии), участие в создании мембранного потенциала, в превращении энергии при фотосинтезе и окислительном фосфорилировании [c.101]

    Янтарная кислота Бутандиовая кислота НООССН2СН2СООН Токсическое действие. Включена в Перечень. .. опасных веществ от 21.12.95 г. При попадании в организм плохо проникает через клеточные мембраны. Однако проницаемость увеличивается, когда клетки находятся в возбужденном или патологически измененном состоянии [c.624]

    Во многих нейронах, хотя и не во всех (важное исключение составляют миелинизированные аксоны млекопитающих), возвращение к состоянию покоя ускоряется благодаря потенциал-зависимым калиевым каналам в плазматической мембране. Эти каналы, подобно натриевым, открываются в ответ на деполяризацию мембраны, но происходит это отноо1тельно медленно. Повышение проницаемости мембраны для ионов К как раз в то время, когда натриевые каналы инактивируются, позволяет быстро сдвинуть мембранный потенциал до равновесного потенциала К и тем самым вернуть мембрану в состояние покоя (рис. 18-18). В результате реполяризации мембраны калиевые каналы вновь закрываются, а натриевые могут теперь выйти из состояния инактивации. Таким образом, клеточная мембрана меньше чем за одну миллисекунду вновь приобретает аюсобность отвечать на деполяризующий стимул [c.85]

    Существенную роль при оценке активности четвертичных соединений играют процессы адсорбции. Четвертичные соединения, адсорбируясь на поверхности стекла, металла и аналогичных материалов, образуют пленки, обладающие бактерицидными свойствами, Надо думать, что на первом этапе бактерицидного действия происходит адсорбция четвертичного соединения микробной клеткой, обладающей большой поверхностью со специфическими свойствами. Гейл и Тейлор [99] показали, что в результате такой адсорбции повышается проницаемость клеточной мембраны и в конечном счете происходят разрыв мембраны и высвобождение лизина и глутаминовой кислоты. Другие исследователи методом электронной микроскопии установили, что сначала происходит сжатие протоплазмы, а затем разрушение стенки клетки. Однако впоследствии выяснилось [100], что гибель клетки наступает значительно раньше (т. е. при значительно меньших концентрациях реагента), чем удается наблюдать повреждение клетки. Поэтому более вероятным является предположение, что гибель клетки — следствие инактивации энзимов, участвующих в энергетическом обмене и ведающих, например, окислительными процессами. [c.312]

    Инсулин способствует синтезу гликогена в печени и мышцах и усиливает окислительный распад глюкозы в тканях, активируя гексокиназную реакцию, т. е. образование глюко-зо-6-фосфата 2 (см. стр. 164). Инсулин обеспечивает переход глюкозы внутрь клетки, повышая проницаемость клеточной мембраны. [c.94]

    В норме импульсы, идущие от центральной нервной системы, поддерживают секрецию инсулина, глюкагона, адреналина и адренокортикотропного гормона на таком уровне, при котором содержание сахара в крови колеблется в довольно узких пределах — от 80 до 120 мг%. Инсулин повышает проницаемость клеточной мембраны для глюкозы, спо-собствлет синтезу гликогена в печени и в мышцах, усиливает окислительный распад глюкозы в тканях и тем самым вызывает снижение содержания сахара в крови (см. стр. 94). [c.176]

    Повреждение поверхностных структур или слоев клетки. Этанол в достаточно высокой концентрации (70%) вызывает коагуляцию белков и оказывает бактерицидное действие. Фенолы, крезолы, нейтральные мыла и поверхностно-активные вещества (детергенты) действуют на наружные слои клеток и нарушают избирательную проницаемость плазматической мембраны. Клеточные мембраны состоят главным образом из липидов и белков. Детергенты имеют поляркую структуру, причем их молекулы содержат как липофильные группы (длинные углеводородные цепи или ароматические кольца), так и гидрофильные ионизированные группы. Накапливаясь в липопротеиновых мембранах (тоже имеющих полярную структуру), детергенты нарушают их функции. Поскольку эти вещества обладают широким спектром антимикробного действия, их обычно применяют для дезинфекции различных поверхностей и одежды. С детергентами сходны по своему действию некоторые полипептидные антибиотики (полимиксин, колистин, бацитрацин, субти-лин) и антимикробные вещества растительного происхождения. [c.204]

    Вследствие проницаемости клеточных стенок для молекул двуокиси углерода изменения во внешней концентрации ее производят внутри клетки сдвиг в концентрации карбонатов, сопровождаемый изменениями кислотности клеточного сока. Влияют ли изменения во внешней концентрации бикарбонатных ионов, для которых клеточная мембрана почти непроницаема, на состав системы компонентов угольной ки 5лоты в клетке—сложная проблема мембран- [c.204]

    Некоторые исследователи предполагают, что молекула пахучего вещества нри адсорбции неносредственно воздействует на мембрану обонятельной клетки. При этом механизм воздействия на рецептор может заключаться либо в локальном изменении проницаемости клеточной мембраны для ионов нри десорбции молекул (Дж. Дэвйс [372, 373]), либо в изменении проницаемости всей мембраны клетки в результате изменения конформации входящих в ее состав молекул линопротеидов (Дж. Шанже и сотр. [374]). [c.175]


Смотреть страницы где упоминается термин Клеточные мембраны, проницаемость: [c.343]    [c.329]    [c.282]    [c.26]    [c.536]    [c.22]    [c.415]    [c.235]    [c.31]    [c.498]    [c.211]    [c.170]    [c.507]    [c.516]    [c.177]   
Фотосинтез 1951 (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана клеточная

Мембраны Проницаемость



© 2025 chem21.info Реклама на сайте