Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промежуточный продукт, влияние

    Кинетические исследования позволяют определить порядок и константу скорости процесса, число и характер промежуточных продуктов, энергию активации реакции, выяснить влияние природы растворителя, установить характер и число связей, разрываемых в ходе реакции, и т. п. [c.322]

    Марголис и Тодес [35] установили, что катализаторы типа смеси окиси хрома и шпинеля, нанесенные на асбест, вызывают окисление таких углеводородов, как пентан и гептан, до двуокиси углерода и воды. Под влиянием таких катализаторов метилэтилкетон и бутиральдегид, содержащиеся в продуктах неполного парофазного окисления этих углеводородов, должны окисляться в органические кислоты. Поэтому можно считать, что эти соединения не образуются в качестве промежуточных продуктов в процессе поверхностного горения. [c.321]


    Пользуясь формулами (III.36) — (III.38), не следует забывать, что они получены исходя из предположения о равнодоступности внешней поверхности частицы. При обтекании одиночной частицы потоком вещества это предположение явно несправедливо, так как условия массопередачи на участки передней и тыльной сторон частицы резко различны. Единственным строгим методом учета влияния внешней массопередачи на скорость гетерогенной реакции является, как отмечалось в разделе III. 1, решение уравнения (III.13). Неравнодоступность поверхности будет сказываться особенно сильно в сложных процессах, включающих последовательные реакции, приводя к уменьшению выхода промежуточного продукта. [c.112]

    Наибольший научный интерес представляют превращения, протекающие без изменения числа третичных атомов углерода, так как высокая скорость этих реакций обычно связана с интересными возможностями выделения промежуточных продуктов, т. е. с возможностью исследования деталей механизма и кинетики различных превращений. При медленном же течении реакции главное значение приобретают термодинамические факторы и состав продуктов реакции определяется уже термодинамической устойчивостью конечных соединений. (Этот тип реакций иногда называют термодинамически контролируемым, в противоположность другому типу реакций, протекающих под влиянием кинетического контроля состав продуктов реакции определяется здесь уже скоростями их образования.) [c.148]

    В таких случаях большего успеха можно достичь с помощью дифференциального метода, оперируя только начальными скоростями. Этим способом можно определить зависимость скорости реакции от концентрации строя логарифмическую зависимость начальных скоростей от начальных концентраций либо получают, либо не получают прямую линию, но какую-то зависимость между ними можно всегда обнаружить. Затем определяют временной порядок реакции, сравнивают его с истинным порядком и устанавливают наличие влияния промежуточных продуктов. Влияние промежуточных соединений может быть изучено путем добавок их в начальные моменты реакции и наблюдения за изменением начальных скоростей процесса. Только такой последовательный подход даст возможность вывести уравнение, представляющее скорость процесса как функцию концентраций реагентов, продуктов реакции и других свойств системы. [c.29]


    ПРОМЕЖУТОЧНОГО ПРОДУКТА, ВЛИЯНИЕ НА СЕЛЕКТИВНОСТЬ [c.286]

    Влияние температуры и давления на равновесие. Влияние температуры на равновесие ясно показано на рис. 1. Повышение температуры способствует как разложению исходных углеводородов до промежуточных продуктов, так и превращению последних в ацетилен. Кроме того, отмечается, что протеканию всех реакций способствует также уменьшение давления, так как все реакции идут с увеличением общего числа молей. Введение инертных газов должно оказывать такой же эффект, как и уменьшение давления. Однако разбавление водородом должно прекратить образование ацетилена, так как водород всегда является продуктом, по крайней море, одной стадии разложения исходного углеводорода. [c.63]

    Если доля обрыва цепей на поверхности пренебрежимо мала или если поверхность благоприятствует протеканию процесса в нужном направлении (инициирует радикалы, разлагает побочные нестабильные промежуточные продукты и т. п.), то здесь интенсификация теплоотвода и оптимизация реакции достигается максимальным усилением перемешивания и особых проблем не возникает. Иначе обстоит дело при вредном влиянии поверхности за счет обрыва цепей или разложения активных промежуточных продуктов. Тогда направления интенсификации теплообмена и повышения скорости и (или) селективности реакции противоположны. Эту противоположность нельзя обычно устранить каким-либо покрытием поверхности, поскольку, как правило, неактивные в химическом плане поверхности (фосфорные, борные или силикатные эмали) мало теплопроводны. Кроме того, часто вообще не удается подобрать инертное покрытие. В таком случае задачу надо решать расчетом, подбирая решение, оптимальное в химическом или экономическом смысле. Основой такого решения будет математическая модель реактора, представляющая собой систему кинетических уравнений вида (2.5), дополненную уравнениями гибели радикалов на стенке и (или) разложения на стенке кинетических промежуточных продуктов реакции. Без уточнения механизма реакции такую систему с учетом принципа Боденштейна для проточных аппаратов полного смешения (более частый [c.103]

    Математическая модель процесса и ее решение усложняются в случае, когда имеют место несколько параллельных или последовательных реакций. Наиболее интересным является случай, когда промежуточные продукты распределяются между фазами, так как при этом можно проследить влияние коэффициентов массопередачи. [c.130]

    В группе реакций изомеризации и расщепления возможно аналогичное влияние строения молекулы и характера замещающих групп па скорость процесса. Однако особенности таких реакций определяются в первую очередь образованием в качестве промежуточных продуктов заряженных или незаряженных частиц, т. е. ионов или радикалов. [c.113]

    Влияние катализаторов. Сильное влияние на скорость химической реакции оказывают некоторые вещества — катализаторы. Катализаторы, образуя с реагентами промежуточные продукты, повышают скорости химических реакций на много порядков, выделяясь в конце реакции в неизменном химическом состоянии. Так, например, в смеси Нг и О2 при нормальной температуре скорость реакции образования воды практически равна нулю. Если же ввести в сосуд. [c.529]

    Схема да. Для оценки данной пары реакторов рассмотрим сначала влияние рецикла на работу реактора идеального вытеснения. При отсутствии рецикла смешения потоков с различными концентрациями продуктов реакции не происходит,-Поэтому в реакторе обеспечивается максимальный выход промежуточного продукта Я. По мере увеличения рециркулируемого количества реакционной массы аппарат приближается к проточному реактору идеального смешения и. следовательно, процесс [c.177]

    Влияние примесей промежуточных продуктов в исходном веществе или в рециркулируемом потоке. Влияние примесей промежуточного вещества R довольно просто установить по номограммам УП-17 и VH-18. В данном случае, считая, что реакция частично прошла, пользуются той же линией для к к , что и при взаимодействии чистых исходных веществ, но проводят ее не от начала координат, где С/ /Сло = 0, а от точки, которая соответствует действительной начальной величине этого отношения. Наличие продукта R в исходной смеси приводит к уменьшению общей избирательности процесса. [c.196]

    Следует отметить еще одно отрицательное влияние перемешивания и увеличения порозности кипящего слоя по сравнению с неподвижным, это ухудшение избирательности для процессов, целевым продуктом которых является промежуточный продукт цепи последовательных реакций. Средняя концентрация промежуточного продукта в объеме кипящего слоя вследствие перемешивания больше, чем в объеме неподвижного во столько же раз больше и скорость превращения це.чевого промежуточного продукта, в конечное, возможно не нужное или вредное, вещество. Увеличение порозности кипящего слоя по сравнению с неподвижным, отрицательно сказывается при гетерогенно-гомогенном (в частности цепном) протекании процесса, когда катализатор ускоряет реакцию получения целевого продукта, а в свободном объеме идут побочные реакции образования бесполезных или даже вредных веществ. В таких случаях неприемлем обычный кипящий слой, следует применять тормозящие устройства, уменьшающие степень перемешивания, снижающие размеры пузырей. Применение тормозящих элементов может привести в пределе к режиму идеального вытеснения [74], т. е. полностью устранить основной недостаток кипящего слоя. [c.100]


    Влияние различных веществ. Помимо металлов и солей, катализирующих в той или иной мере окисление масел, существуют различные органические соединения, выполняющие ту же роль. Действие их заключается в том, что они либо легко активизируются и образуют с молекулярным кислородом перекиси, либо содержат уже в своем составе активные молекулы и являются, таким образом, первичными элементами в цепи реакций окисления [12]. Исследования Френсиса [44] показали, что прибавление скипидара к парафину значительно облегчает окисление последнего уже при температуре 100—110°. Многие промежуточные продукты окисления являются катализаторами, ускоряющими автоокисление. В работах Френсиса с сотрудниками [45] показано, что для достижения в окисляемом парафине при 100° концентрации кислорода 7% требуется вести окисление 1250 час. Тот же эффект достигается за 390 час. при добавлении к окисляемому парафину 5% кислот—продуктов окисления. Аналогичная картина наблю- [c.290]

    Деление на основное или вспомогательное оборудование условно и зависит от конкретных условий эксплуатации данного оборудования и степени его влияния на получение конечного и промежуточного продукта. Обычно к основному относят оборудование, предназначенное для проведения основных химикотехнологических процессов и получения целевого продукта. Выход из строя основного оборудования приводит к остановке технологической линии (установки) или резкому снижению ее производительности. [c.345]

    Неблагоприятного влияния промежуточных продуктов можно избежать, проводя окисление при 205—218 °С и 2,06 МПа в среде уксусной или бензойной кислоты катализатором являются соли кобальта или марганца, промотированные бромом. Содержание катализатора до 10% оптимальная концентрация толуола в [c.69]

    Обзор реакций сульфирования соединений нафталинового ряда, содержащих гидроксильную группу, показывает, что все внимание практически было сосредоточено на 1- и 2-нафтолах, без сомнения ввиду большого значения соответствующих сульфокислот как промежуточных продуктов при синтезе красителей. Остается еще много сделать в области изучения реакций сульфирования алкильных и других простых производных нафтолов, прежде чем будет решен вопрос о направляющем влиянии [5546] различных групп в соединениях этого типа. [c.98]

Рис. 69. Влияние добавок промежуточны продуктов на ход поглощения кислорода при 140 . Рис. 69. Влияние добавок <a href="/info/6222">промежуточны продуктов</a> на ход поглощения кислорода при 140 .
    В результате многочисленных работ в области каталитических реакций и процессов, обобщений ранее накопленных наблюдений и теоретических работ создалось новое направление в химии, которое оформилось в виде самостоятельной дисциплины—каталитической химии, или учения о катализе. Границы этой новой науки еще недостаточно определены, так как каталитическое влияние могут оказывать стенки сосудов, в которых проводится реакция, всегда имеющиеся примеси в реагентах и получающиеся промежуточные продукты. Все эти факторы усложняют понимание процессов. Каталитические реакции в гетерогенной фазе являются наиболее сложными вследствие того, что в основе их лежит физическое представление о твердом теле, еще не достаточно изученное. [c.19]

    Вторая фаза реакции, отщепление протона, стимулируется основаниями. Поэтому можно ожидать, что скорость реакции сочетания будет увеличиваться под влиянием щелочей или пиридина в тех случаях, когда промежуточный продукт не превращается полностью в азокраситель вследствие разложения на исходные вещества. Во втором из приведенных выще примеров эти свойства промежуточного продукта объясняются пространственными затруднениями. [c.596]

    Вклад в кинетику каждой из перечисленных ступеней неравнозначен. Предполагается [7-26], что основное влияние на скорость отложения оказывает транспорт промежуточных продуктов или используемого углеводорода к поверхности в относительно тонком, прилегающем к ней, слое. [c.448]

    Имеется ряд сообщений о влиянии добавок на периоды и г . По-видимому, особо важную роль играют добавки соединений, образующихся в качестве промежуточных продуктов реакции, таких как формальдегид и ацетальдегид. Изучение смесей пентан-кислород и гексан-кислород при температурах несколько выше 200° С показало, что добавление умеренных количеств формальдегида оказывает сильнейшее ингибирующее действие [8], Точно так н<е при изучении смесей пропан-кислород было обнаружено увеличение индукционного периода в присутствии формальдегида [15]. В противоположность этому наблюдения над влиянием ацетальдегида на смесь ЮдН а + 20а при температуре 329° С и давлении 200 мм рт. ст, (по-видимому, в период т ) показали, что индукционный период после добавления ацетальдегида уменьшается. Однако следует отметить, что в указанных опытах индукционный период не уменьшался до нуля даже при добавлении 5% ацетальдегида, хотя по данным экспериментаторов [1] это соответствовало приблизительно концентрации ацетальдегида к концу индукционного периода в тех случаях, когда ацетальдегид вообще пе добавлялся к смеси. Поэтому Айвазов и Нейман пришли к заключению, что один ацетальдегид не может бы1Ь причиной мгновенного образования холодного пламени, и предположили, что перекиси, обнаруженные ими в сравнимых количествах, также должны играть известную роль в механизме возникновения холодного пламени. По-видимому, это предположение справедливо, однако возникает вопрос, идентичны ли перекиси, выделяемые из реакционной смеси, тем активным перекисям, которые обусловливают реакцию разветвления цепи в период т . Вероятно, следует различать, по крайней мере, два процесса образования перекисей. Одним из них является окисление формальдегида с образова- [c.256]

    Влияние начального давления на сохранение промежуточных продуктов конверсии смеси состава 88,4 С2Нв/11,6 Оа в статической системе [42] [c.329]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    Анализ экспериментальных данных [95, 147], где был использован целый ряд приемов, приводящих к изменению концентраций промежуточных продуктов в смешиваюпщх-ся потоках и расчетно-теоретических данных [90], в которых исследовалось промотирующее влияние добавок в измененном воздухе, подтверждает правильность заключения о важности учета особенностей химического превращения для правильного описания феноменологии процессов смешения и горения в целом. [c.355]

    Такое обобщение удобно для процессов, в которых необходимо сосредоточить основное внимание на изменении качества сырьевой фракции или ее влиянии на результаты процесса. Его использование в чистом виде для процессов глубокого разложения затруднительно, так как трудно определить, какая доля продукта (например, газа) образовалась за счет одной части сырья, какая — за счет друго11, как реагируют компоненты промежуточных продуктов и т. д. Очевидно также, что конкретное применение данного метода требует значительно большего объема химических анализов сырья и продуктов. При использовании этого метода может оказаться полезным люминесцентно-хроматографический анализ углеводородных смесей [58]. [c.181]

    ТОЛЬКО С уменьшением концентрации, углеводорода, но и с влиянием образуюи1,ихся продукте . Чем выше температура, тем больше степень превращения, при которой начинается торможение. Этим определяется оптимальная степень конверсии при жидкофазном окислении боковых цепей алкилароматических соединений. После отделения кислоты непревращенный углеводород и промежуточные продукты снова возвращают на окисление. [c.399]

    Влияние продолжительности опыта (при постоянных Т и у) проиллюстрировано ранее рис. 4.3, а. Аналогичные зависимости выхода кокса, газа, промежуточных продуктов и глубины превращения от продолжительности опыта в присутствии водорода получены на1>1и для каталитического ри(1>орминга, гидроочистки, гидрокрекинга, изомеризации и других процессов. [c.98]

    Нами исследовались изменения структуры пор и удельной поверхности цеолитсодержащих катализаторов крекинга при закоксовании, а также характеристики кокса, вьщеленного с поверхности катализатора [28, 29]. Как установлено, преобладающая часть кокса на катализаторах крекинга представляет собой сферообразные частицы. Их размер достигает 30 нм и мало зависит от содержания образующегося кокса при его изменении в пределах 0,4 до 7,0% (масс.). Возможность образования крупных глобул получает логическое объяснение, если допустить, что углеводороды и продукты их уплотнения могут мигрировать по поверхности катализатора. Такое допущение основывается на том, что для миграции требуется существенно меньшая энергия, чем для перехода из адсорбированного состояния в газообразное (примерно на величину, равную теплоте испарения). Поскольку промежуточные продукты реакций уплотнения способны частично десорбироваться в газовую фазу, естественно, они способны и к диффузии по поверхности. Определенным подтверждением этого является ранее отмеченный факт пла-сти>шого состояния кокса, выделенного из катализатора крекинга, при температурах 450-500 °С. Предположение о диффузии было подтверждено также исследованиями по изучению влияния термообработки в токе гелия на распределение кокса по грануле аморфного алюмосиликатного катализатора крекинга. Как установлено, после прогрева наблюдается выравнивание распределения кокса. [c.10]

    Влияние температуры на выход продуктов крекинга представлено на рис. 22, который показывает, что кривые выхода бензина / и кокса 3 имеют экстремальный характер. С повышением температуры в результате разложения тяжелых углеводородов увеличивается выход бензина 1. Вместе с тем повышение температуры приводит к распаду легких углеводородов, входящих в состав бензина, с образованием газообразных продуктов 2. Начальное снижение выхода кокса 3 с повышением температуры объясняется увеличением испарения и десорбции некоторых промежуточных продуктов с поверхности катализатора. После достижения температуры, соответствующей минимальному выходу кокса, выход его растет, поскольку повышение температуры обусловливает возрастание глубины превращения сырья. В результате образования коксовых отложений при крекинге сырья катализатор дезактивируется в течение нескольких минут и отводится на регенерацию. Реге- [c.67]

    Активность саж оказывает влияние не только на физико-химические свойства конечных, но и на структурно-механическую прочность промежуточных продуктов. Для улучшения обрабатываемости промежуточных продуктов, образующихся на различных стадиях, более равномерного распределения компонентов в системе, повышения пластических свойств в состав смеси вводят мягчители и пластификаторы, кот(5рые повышают пластические свойства резиновой смеси. Пластификаторами, добавляемыми в каучуки общего назначения, служат нефтяные углеводороды (от 5 до 30% масс.), органические кислоты (1—2% масс.), смолы (3—10 % масс.). [c.114]

    Такое различие вполне объяснимо, если учесть теорию коксования. С утяжелением сырья в паровую фазу переходят фракции" с более высокой молекулярной массой в условиях коксования иа, порошкообразном коксе они подвергаются большим деструктивным изменениям, чем более легкие промежуточные фракции, получаемые из облегченного сырья. При замедленном коксовапии из-за низкой температуры паровой фазы (420—440 °С) различие в промежуточных продуктах не может оказать заметного влияния на выход и качество легких продуктов коксования (газа, бензина). . [c.242]

    Производные нафталинсульфокислот. Многие сложные нафтоль-ные производные, имеющие техническое значение как промежуточные продукты в производстве красителей, получены обработкой легко синтезируемых сульфокислот щелочью при высокой температуре. Описание примененных методов ведения процесса приводится только в старой патентной литературе и не может считаться очень надежным, однако некоторые выводы, относящиеся к влиянию заместителей и расположению сульфогрупп на характер реакции, могут быть все же сделаны. 1-Сульфокислоты, вообще говоря, легче реагируют со щелочами, чем 2-соединения [330]. Как и в бензольном ряду, аминогруппа, находящаяся в пара-положешт. к сульфогруппе, отщепляется в виде аммиака, тогда как л-аминогруппа не затрагивается. Активируется также аминогруппа, стоящая в ери-положении. В 3-нафтолсульфокислотах реакция с щелочью требует значительно более высокой температуры в случае 6-сульфокислоты, чем для 7-сульфокислоты, что неудивительно, так как положение 6 здесь аналогично пара-ноложению в фенольном ядре, а фенол-л-сульфокислота реагирует с расплавленной щелочью лишь при высокой температуре. [c.241]

    Промежуточные продукты синтеза дивинила из ацетилена по В. Реппе также имеют важное техническое значение (особенно тетрагидрофуран). Под влиянием тяжелых металлов тетрагидрофуран превращается в пластические полимеры  [c.749]

    Однако возможно также прогоркание жиров под влиянием бактерий и плесневых грибков. Этому разлол ению подвергаются и жиры, содержащие насыигенные жирные кислоты. Плесневые грибки действуют на насыщенные карбоновые кислоты, расщепляя их по принципу р-окнсления, причем здесь, по-видимому, не образуется -окси-кислот в качестве промежуточных продуктов, как при классическом 3-окислении (стр. 245), поскольку -оксикислоты не превращаются в кетоны при действии плесневых грибков  [c.270]

    Гликолевый альдегид получается также при разложении озонидов аллилового и коричного спиртов. Гликолевый альдегид можно рассматривать как простейший альдегидосахар ( альдозу ). Он образуется в качестве промежуточного продукта при конденсации формальдегида в сахар, протекающей in vitro под влиянием карбоната кальция (Г. и А. Эйлер)  [c.315]

    М е т и л г л и о к с а л ь СНдСОСНО. Раньше считали, что этот кето-альдегид является промежуточным продуктом при спиртовом брожении сахаров (стр. 119) и при гликолизе. В настоящее время эта точка зрения оставлена однако не исключена возможность, что метилглиоксаль образуется в небольших количествах при процессах обмзна веществ. При обработке щелочами и под влиянием животных или растительных ферментов он легко превращается в молочную кислоту, претерпевая внутримолекулярную реакцию Канниццаро (Дэкин и Дэдли, Нейберг)  [c.318]

    Пиронины образуются при конденсации лг-диметиламинофенола или его гомологов с формальдегидом. В качестве промежуточного продукта образуется тетраметилдиаминодиоксидифенилметан под влиянием серной кислоты он ангидризуется в циклический эфир (лейко-пиронин), который затем окисляется до красит( ля  [c.768]


Смотреть страницы где упоминается термин Промежуточный продукт, влияние: [c.75]    [c.221]    [c.337]    [c.337]    [c.13]    [c.164]    [c.184]    [c.566]    [c.989]    [c.56]    [c.202]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Промежуточный продукт



© 2025 chem21.info Реклама на сайте