Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обмен энергетический

    В классической статистической механике Максвелла—Больцмана молекулы, находящиеся на одном энергетическом уровне i (т. е. обладающие энергией е ), неразличимы, тогда как молекулы с разными энергиями (например, е и ) различимы и обмен их положениями в фазовом пространстве дает новое микросостояние. Основываясь на этом исходном положении, классическая статистическая механика дает уравнение для величины W, соответствующей данному распределению молекул по энергетическим уровням [c.328]


    Обмен энергетическими ресурсами между различными предприятиями комбината зависит от структуры комбината и условий его работы. В табл. 30 приведены данные, характеризующие примерное потребление газа на современном крупном металлургическом комбинате [8]. Коксовый газ в смеси с доменным расходуется на этом комбинате главным образом для выплавки стали (55%), для обогрева нагревательных колодцев прокатных станов (25%) и для обогрева коксовых печей (6%). Доменный газ расходуется для обогрева коксовых печей (32%), для воздухонагревателей доменных печей (16%), для производства проката, в основном для блюминга (16%), и для паровых котлов (13%). [c.106]

    Из приведенных рисунков видно, что для всех изученных случаев обмена коэффициенты избирательности меньше единицы. Следовательно, дифференциальная работа обмена всегда отрицательна, причем обмен энергетически наименее выгоден для иона лития. [c.156]

    В модели Райса — Рамспергера — Касселя (РРК) для распада молекул предполагается, что полная энергия, распределенная среди п слабо связанных гармонических осцилляторов, составляющих молекулу , имеет полную свободу перераспределения. В этом смысле п — 1 осцилляторов, связанных со слабым осциллятором, выполняют по отношению к нему роль энергетического резервуара. Эта модель была подвергнута критике Слетером [6], который высказал предположение, что процесс передачи энергии между осцилляторами может быть медленным, поэтому скоростью передачи энергии нельзя пренебречь. Как на крайний случай он указал, что осцилляторы, принадлежащие к молекулярным колебаниям различных классов симметрии, не могут обмениваться энергией . Дальнейшее ограничение, налагаемое на обмен энергии, обусловливается дискретностью энергетических уровней квантовой системы. Дело в том, что молекула может изменять свое внутреннее энергетическое распределение только между состояниями, полная энергия которых [c.199]

    Высокие скорости взаимного превращения 2- и 3-метилпентанов ставят эти реакции в особый класс и показывают, что между этими двумя изомерами существует весьма низкий энергетический барьер. Это может быть связано с тем, что цепной механизм можно рассматривать таким образом [уравнения (27 и 28)], что 1) внутримолекулярный водородный обмен может идти только между третичным ионом карбония и парафином 2) парафин, участвующий в этом обмене, имеет третичный водород и 3) ни иа одной из стадий механизма нет надобности постулировать первичный ион карбония или его эквивалент  [c.31]


    Пусть теперь в результате соударения частиц произошел обмен энергией, который привел не просто к изменению их энергетических состояний, но и к изменению их химического строения, т. е. произошла химическая реакция, превратившая одни компоненты в другие. В этом случае уравнение (2.3) приобретает вид [c.52]

    Образовавшийся первоначально карбониевый ион вступает в обменные реакции с исходным углеводородом. Этот обмен облегчается, если в исходном углеводороде есть третичные углеродные атомы. Так как образование первичных ионов энергетически невыгодно, их концентрация мала кроме того, они легко переходят во вторичные или третичные ионы в результате гидридного переноса  [c.121]

    Рассмотрим химико-технологическую систему, находящуюся в стационарном состоянии и характеризующуюся незначительным изменением кинетической и потенциальной энергии (рис. УП-З). Пусть в системе имеется N0 химических компонентов (сложных соединений), которые состоят из МЕ различных химических элементов. В системе может протекать ЫК химических реакций, происходит энергетический обмен с окружающей средой О, [c.176]

    Для большинства обменных реакций характерно наличие потенциального барьера, через который проходит путь реакции. Профиль пути реакции такого типа показан на рис. 12. Характерная особенность таких процессов состоит в том, что даже при экзотермическом нан])ав. И нии реакции исходные молекулы должны обладать достаточным запасом энергии для преодоления энергетического барьера Е . [c.66]

    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]

    Получены энергетические и угловые распределения продуктов рассматриваемых обменных реакций. [c.102]

    Между косной, безжизненной частью планеты и живым веществом, ее населяющим, идет непрерывный материальный и энергетический обмен, материально выражающийся в движении атомов, вызванном живым веществом . [c.14]

    Одним из условий существования человеческого общества является непрерывный обмен энергией с окружающей средой. Поэтому энерговооруженность общества составляет условие прогресса человечества, а дальнейшее развитие материальной культуры непосредственно связано с решением энергетической проблемы. Уровень материального благосостояния современного общества определяется количеством энергии, вырабатываемой на душу населения. [c.55]

    На рис. 2.3 показана эволюция развития основных процессов переработки тяжелых нефтяных дистиллятов и остатков на примере США, где эти процессы получили наибольшее распространение в схемах НПЗ. В той или иной мере эти тенденции характерны для нефтепереработки других зарубежных стран и СССР с учетом их специфики. Для каждого региона, страны и нефтеперерабатывающего предприятия выбор схемы переработки нефти зависит от объема и структуры потребления нефтепродуктов, качества перерабатываемого сырья, требований по охране окружающей среды, технико-экономических показателей развития соответствующих процессов и экономических факторов— цены нефти и других энергетических ресурсов, их доступности, стоимости строительства, условий обеспечения оборудованием, финансовых, трудовых, материальных возможностей и т. д. Для зарубежных стран важное значение имеют также общий уровень экономического развития, обеспеченность собственными энергетическими ресурсами, в том числе нефтью, и экспортно-импортные возможности. Для развитых капиталистических стран, не имеющих собственных ресурсов нефти, это — импорт нефти и нефтепродуктов и экспорт оборудования, технологий, продовольствия для развивающихся стран, богатых ресурсами нефти, это — экспорт нефти (а в последнее время для некоторых стран ОПЕК — и нефтепродуктов) в обмен на оборудование, продовольствие и предметы потребления. В период 60-х и начала 70-х годов, при наличии дешевой ближневосточной и латиноамериканской нефти, в странах Западной Европы, Японии и развивающихся странах Латинской Америки, Ближнего и Среднего Востока и Африки широкое распространение получили схемы НПЗ с неглубокой или умеренной глубиной переработки (за счет частичной переработки тяжелых дистиллятов и остатков) нефти со значительными объемами выработки мазута для энергетических и промышленных нужд. В США же традиционно вследствие высокого уровня потребления моторных топ- [c.49]


    В вихревой трубе обеспечивается эффективное температурное разделение поступающего сжатого газа на охлажденный и нагретый потоки. Данное явление, открытое еще в 1931 г. Жозефом Ранком, до настоящего времени полностью не раскрыто, хотя предложено много гипотез для его объяснения [9, 10, 12-14]. Так, сущность вихревого эффекта пытались объяснить только перестроением в сечении соплового ввода ВТ свободного вихря в вынужденный, под действием сил трения, расширением истекающей струи из соплового ввода в осевую зону и сжатием ее в периферийной зоне ВТ за счет центробежных сил. Наиболее глубокое теоретическое объяснение вихревого эффекта в противоточной трубе, подтверждаемое экспериментами, дано А. П. Меркуловым [9], принявшим за основу гипотезу взаимодействия вихрей Г. Шепера [13] и теоретические предположения Ван Димтера [14] об энергетическом обмене в вихревой трубе за счет турбулентного перемешивания потоков. Многие специалисты по вихревому эффекту у нас в стране считают данную теорию наиболее полной. А. В. Мартынов и В. М. Бродянский [10] дали несколько иное толкование механизма вихревого процесса в трубе. [c.27]

    Добыча топливно-энергетических ресурсов и производство на их основе электрической и тепловой энергии представляют собой крупномасштабный материальный и энергетический обмен с окружающей средой, в ходе которого в нее поступают промышленные отходы, пятикратно превышающие объем используемого топлива, и возвращается в виде тепла более 60% энергии сжигаемого топлива. В экологическом от- [c.12]

    Из сказанного видно, что информационный обмен между системами и их элементами является наиболее сложным и не менее значимым, чем энергетический или материальный. [c.30]

    Изменения в деятельности оператора незамедлительно сказываются на состоянии, функционировании и поведении ЧМС. Нарастающее утомление оператора, например, может замедлить его реакции на внешние и внутренние раздражители, ускорить реализацию отдельных операций, изменить характер связей между компонентами, нарушить информационный, энергетический, вещественный обмен и т. д. Во всех случаях новое состояние системы предъявляет новые требования к человеку, его надежности, быстродействию, точности и помехоустойчивости. Так как эти свойства и роль оператора определяют в основном эффективность всякой ЧМС, их необходимо комплексно учитывать при разработке, проектировании и эксплуатации биотехнических систем. [c.59]

    Например, литий имеет объемно-центрированную структуру, для которой координационное число равно 8. Своим существованием эта структура обязана обменному взаимодействию ортогональных р-орбиталей катионов лития, которое приводит к появлению направленных связей, делающих энергетически наиболее выгодной эту сравнительно рыхлую структуру. [c.78]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    В химических производствах коксохимической промышленности перерабатываются преимушественно жидкие и газообразные продукты. Хранение и транспортирование этих продуктов связано со значительными трудностями, вследствие чего ряд производств требует переработки сырья на месте его получения, т. е. усиления технологических связей между отдельными стадиями производства, что также способствует развитию комбинирования коксохимических производств между собой. Благоприятные условия создаются для комбинирования между указанными двумя отраслями на базе обмена энергетическими ресурсами, что имеет важное значение вследствие большой топливо- и энергоемкости металлургического производства. Черная металлургия перерабатывает большее количество сырья, чем какая-либо другая отрасль промышленности. Переработка этого сырья происходит при очень высоких температурах. В связи с этим на 1 т готового продукта (проката) расходуется 2,5—3 т условного топлива (с учетом тепла на выработку пара и электроэнергии, потребляемых металлургическими комбинатами). Черная металлургия занимает одно из первых мест по количеству используемого тепла и энергии, причем более 90% всего тепла и энергии расходуется на технологические нужды. Это способствует обмену энергетическими ресурсами, так как к технологическому топливу предъявляются более высокие требования, чем к энергетическому, что делает применяемые виды топлива менее взаимозаменяемыми и, как уже говорилось, способствует обмену энергетическими ресурсами. Вследствие последовательности и непрерывности большей части технологических процессов в черной металлургии в продуктах, проходящих отдельные стадии обработки, сохраняется тепло, которое в противном случае было бы потеряно. Такая организация производства способствует экономической эффективности территориального сближения отдельных процессов металлургического производства, так как только при этом удается сберечь значительное количество тепла, а следовательно, и топлива. Нагрев металла происходит при данном уровне техники с очень низкой степенью полезного использования тепла. Коэффициент полезного действия нагревательных печей не превышает 10—30%. Наибольшие потери в таких печах составляет тепло, уносимое отходяшими газами, оставляющими рабочее пространство печи. Температура этих газов, превышая температуру нагрева металла, составляет 600—1000°. Это создает благоприятные условия для комбинирования металлургических производств с потребителями, которые могут использовать значительные отходы тепла. Кокс выгружается из [c.100]

    Быстрая релаксация 5е(4 Ро) в Нг, возможно, связана с элек-тронно-вращательным (Е—Р) обменом. Энергетически такой процесс вполне возможен, потому что энергия перехода / = = 0->2 в п-Нг равна 365 см , что только на 179 см меньше разницы энергий состояний Ро— Рь а величина изменения углового момента, обусловленного поступательным движением от центра тяжести, при передаче энергии остается почти неизменной. Для проверки общности выводов о влиянии гидридов на этот вид обмена энергией проведены опыты с системами Ре—Нг и Ре—Вг. Результаты подтверждают концепцию Е—Н-пере-Хода следует особенно отметить, что эффективность Ог в релаксации Ре(а / з) в 100 раз выше, чем Не, хотя приведенные массы в обоих случаях одинаковы [отсутствие V—К-переходов при колебательной релаксации СО (у=1) установлено Милликеном [107], обнаружившим одинаковую эффективность Не и Ог в процессах столкновения с СО]. Высокая эффективность водорода в Е—К-обмене связана с тем, что изменение углового момента ротатора требует относительно большой энергии. [c.291]

    Диаграмма потенциальной энерсии для предполагаемого пути реакции в простой симметричной реакции замещения (водород-водородный обмен) показана на рис. 5. Минимумы А и А представляют энергию л-комплексов. Они отделены сравнительно высокими барьерами потеи-циальиой энергии В к В от ст-комплекса в точке С. Для несимметричных реакций замещения энергетические уровни л-комплексов А и А будут немного смещены вверх или вниз в зависимости от условий как правило, они будут обладать разными уровнями энергии. Аналогичным образом изменяются и максимумы В ж В, и, следовательно, опи будут различны. [c.410]

    Прочно связанная со слоистыми силикатами вода энергетически неоднородна. Это объясняется наличием как минимум пяти типов активных центров на их поверхности, с которыми взаимодействуют молекулы воды [91] обменные катионы гидроксильные группы кислого (510Н) и основного (АЮН, МдОН) характера координационно ненасыщенные катионы А1 +, Ре +, Mg + поверхностные атомы кислорода. Если учесть, что по своему происхождению обменные катионы, в свою очередь, разделяются на три типа (обусловленные нестехиомет-рическим изоморфизмом в тетраэдрических и октаэдрических сетках, разорванными связями на боковых гранях частиц), а поверхностные атомы кислорода различаются по величине отрицательного заряда, то становится понятным многообразие форм связи, а следовательно, и энергетическая неоднородность адсорбированной воды. [c.36]

    Макроскопическая скорость реакции соизмеримо меньше макроскопической скорости релаксации. При этом микроскопические скорости реакции больше микроскопических скоростей релаксации уже для многих квантовых уровней (а не для некоторых, как было раньше), что означает нарушение равновесного энергетического распределения пе только вблизи порога, но и на нижних колебателып.тх уровнях. Может случиться так, что среди релаксационных процессов имеется процесс, обеспечивающий быстрьп обмен энергией и выравнивание распределения на нижних уровнях. В этом случае распределению по этим состояниям все же можно придать вид равновесной функции Больцмана, н6 не по обычной поступательной температуре Т, а по некоторой температуре Т. Она определяется предварительно из уравнений, учитывающих текущую концентрацию молекул и изменение их энергий в ходе процесса. Тогда уравнения сводятся к обычным Арренну-совым, по содержат не одну, а две температуры, характеризующие как фиктивное полное равновесие, так и фактическое равновесие по быстрой подсистеме. Для реакции мономолекулярного распада (диссоциации) таким быстрым процессом, устанавливающим равновесие, может явиться, например, резонансный обмен колебательными квантами. Зависимость макроскопического коэффициента скорости от значений Т, Т имеет вид [12] [c.98]

    В процессе рекомбинации могут иметь место две физические модели энергообмена передача энергии от исходных веществ третьему телу и обмен энергией между исходными веществами и третьим телом. Второй механизхм важен тогда, когда сродство третьего тела к реагентам высоко или третья частица уже является энергетически богатой. Однако практически это случается довольно редко и, как правило, рассматривается только первая модель. [c.262]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    На рис. 7.6 и 7.7 показано изменение энергетической эффективности селективного проницания при а= 13 и 3,5, что соответствует разделению смесей СОг—N2 и 62—N2 на мембране из поливинилтриметилсилана. Четко фиксируется максимальное значение т)пр при определенных значениях состава исходной смеси лгщ и отношения давлений е, причем чем выше а, тем ближе эти значения к предельным, определяемым равновесием при а- оо. Область значений состава 0<лги<л и и отношения давлений 0<е< е для мембраны с конечным значением фактора разделения (l< ai,2росту энергетической эффективности мембранного разделения с увеличением доли легкопроникаюшего компонента и отношения давлений. Заметим, что в этой области происходит одновременное улучшение массообменных характеристик разделения. После достижения максимума т пр дальнейший рост и е приводит к противоположному характеру изменения энергетических и массо-обменных показателей мембранного разделения, как это наблюдалось при а оо во всем диапазоне. vi, и е. [c.247]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Потенциал стеклянного электрода обусловлен обменом иопов щелочных металлов, находящихся в стекле с ионами водорода из раствора. Энергетическое состояние ионов в стекле и растворе различно. Это приводит к тому, что ионы водорода так распределяются между стеклом и раствором, что поверхности этих фаз приобретают противоположные заряды, между стеклом и раствором возникает разность потенциалов, значение которой зависит от pH раствора. Подробно теоретические основы работы стеклянных и других ионселективных электродов описаны в соответствующих монографиях. [c.120]

    На рис.4.12 приведены зависимости среднего угла рассеяния гатакующе-го атома от его начальной поступательной энергии для нереакционных траекторий, а также аналогичные зависимости для угла рассеяния атома, полученного в результате реакции обмена. Для всех реакций приблизительно линейно убывает, а 2 возрастает с увеличением поступательной энергии налетающего атома. Видно, что и 2 слабо зависят от колебательного возбуждения реагентов. Энергетические распределения, усредненные по распределению Максвелла, приведены на рис. 4.13, а угловые распределения — на рис. 4.14. На рис. 4.15 представлены зависимости расстояний между атомами от времени для обменной реакции. Согласно расчету реакции протекают за время (2 4) Ю с. [c.99]

    Расположение катионов и ионообменные свойства. В структуре цеолитов существуют энергетически наиболее выгодные места расположения катионов, компенсирующих отрицательный заряд тетраэдра AIO4. Такими местами локализации для цеолитов ти па X и Y являются места Sb5is 5п и Sn- pH . 3.2). Возможно также, особенно для гидратированных цеолитов, нахождение катионов в местах 5пь расположенных у четырехчленных кислородных колец внутри большой полости, и в местах Sv — в центре двенадцатичленных кислородных колец в большой полости [5]. Число мест S (Si>), Sni SnO и в элементарной ячейке цеолитов типа X и Y составляет соответственно 16, 32 и 48. Катионы натрия, которые вводятся в цеолиты типа X и Y непосредственно при синтезе, обычно локализуются в местах Si, и Su и способны обмениваться на другие катионы (аммония, двух- и трехвалентных металлов). Максимально возможное число обменных одновалентных катионов в элементарной ячейке цеолитов типа X и Y определяется отношением Si/Al и не превышает 96 (при (Si/Al = = 1). [c.28]

    Если в какой-то момент времени ядерные диполи прецессируют в фазе, то время, необходимое, чтобы фазы прецессии разошлись, равно (Av) . Это время можно рассматривать как часть времени спин-спинового взаимодействия Т . Кроме того, ядро, создающее магнитное ноле и осциллирующее с ларморовой частотой, мол<ет вызвать переход у соседнего ядра. Происходит одновременная переориентация обоих ядер, т. е. обмен энергией при сохранении их обгцей энергии. Прн этом изменение энергетического состояния одной частицы влияет на состояние другой. [c.256]

    С другой стороны, энергетическая неоднородность поверхности, присутствие обменных катионов приводят к различию в свойствах связанной воды. Свойства молекул воды, связанных обменными ионами поверхности твердой частицы, отличаются от свойств воды в объеме тем больше, чем выше плотность заряда нона.В глинистых минералах количество воды, связанной наиболее прочно, больше при наличии поливалентных катионов в обменном комплексе. Кривые обезвоживания мо-ноионных форм бентонитов при нагревании (рис, 11.16) свидетельствуют о различном энерге-т-нческом состоянии связанной воды в зависимости от обменного катиона, его способности влиять яа трансляционное движение молекул воды. Чем выше упорядочивающее воздействие катионов (А1 +, Mg +), тем слабее трансляционное движение молекул воды и тем при более высоких температурах в пей разрываются водородные связн и она удаляется с [c.61]

    В реагирующей системе А ВСт1АВ С атомы В тл С соединены простой связью, т. е. парой электронов с противоположными спинами, а А имеет неподеленный электрон. При присоединении А к ВС взаимодействие электронов дает снижение обменной энергии, в результате связь ВС ослабевает и нарастает тенденция к разрыву молекулы. При достижении определенного энергетического уровня атом С начинает удаляться из молекулы, а А—внедряться. В некоторый момент силы связей атомов А и С с В будут уравновешены, и система вступает в переходное состояние. Изменение потенциальной энергии системы при этой реакции представлено графически на рис. 27. В точке пересечения барьера образуется активированный [c.131]

    На стадии изготовления констр тщию можно рассматривать как открытую систему, т е. систему, которая осуществляет энергетический и материальный обмен с внешней средой. Действительно, в процессе производства в систему, которую условно можно назвать конструкцией, посту- [c.21]

    Вторая энергетическая характеристика процессов, работа А, аналогична теплоте в том отношенни, что она также показывает количество энергии, полученное (отданное) системой в ходе процесса. Но работа характеризует обмен энергией в форме кинетической энергии направленного, упорядоченного движения частиц. [c.22]

    Величина д — это количество энергии, которо получает одна часть системы (воздух), но отдает другая ее часть (проволока). Между частями системы происходит обмен энергией также и в форме работы гальванический элемент от ьтет, а проволока получает работу электрического тока. Однако, чтобы определить изменение внутренней энергии системы как целого, в данном случае не требуется выяснять энергетический баланс всех составных частей системы но отдельности, поскольку есть возможность ианти итоговые значения Q и А, характеризующие обмен энергией между системой и окружающей средой. Такую возможность Вы легко обнаружите, обратив внимание иа изолированность рассматриваемой системы и вспомнив свойства изолированных систем (см. 0—1). [c.30]

    Указанных в задании сведений недостаточно для полного выяснения энергетических балансов составн " частей системы. Но этого и не требуется, посколЫ изменеиие внутрениеи анергии системы в целом, со гласно выражению (1.13), можно найти, учитывая лишь обмен энергией между всей системой и окружающей ее средой. [c.44]

    ИзучеЕ1ие эффектов ассоциации одноименных (пар-твердый конденсат) или разноименных (пар-газ) молекул привело к получению соответствующих зависимостей, Показано, что при конденсации пара в жидкость из парогазовых смесей скорость конденсации резко уменьшается с повышением содержания газа. Рассмотрение процесса конденсации во всей его сложности с учетом молекулярных взаимодействий дает возможность выявить особенности конденсации как в жидкое, так и твердое состояние. Общим является то, что обмен энергией между частицами в объеме и на поверхности происходит в состоянии ассоциации. Можно предположить, что фазовые превращения, например пар-жидкий конденсат, будут растянуты во времени, так как некоторое повышение температуры смеси при конденсации может привести к разрушению только образовавшихся кристаллических решеток за счет собственной энергии фазового превращения. У определенной части молекул кинетическая энергия может становиться больше потенциальной энергии взаимодействия, и эта часть молекул вновь испаряется с поверхности конденсации. В этих случаях процесс теплообмена по физической сущности представляет собой обмен энергией между частицами, находящимися в различном энергетическом состоянии. Такой обмен энергией между частицами обычно называют переносом тепла. При конвективном теплообмене поток тепла вызывается наличием градиента температуры. Однако даже при отсутствии температурного градиента за счет хаотического теплового движения молекул среды непрерывно происходит хаотический перенос тепла. [c.100]


Смотреть страницы где упоминается термин Обмен энергетический: [c.6]    [c.346]    [c.111]    [c.9]    [c.103]    [c.99]    [c.101]    [c.81]    [c.89]    [c.75]    [c.103]   
Биохимия (2004) -- [ c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты энергетический обмен

Вирус желтухи, влияние на функции энергетический обмен табака

Водный и энергетический обмен при транспирации

Лабораторное занятие 10. Энергетический обмен. Окислительное фосфорилирование. Окислительные системы, не связанные с продукцией энергии

Лабораторное занятие 11. Коллоквиум Введение в обмен веществ Мембраны. Энергетический обмен. Пути использования кислорода. Общие пути катаболизма

Лабораторное занятие 9. Энергетический обмен. Митохондриальная цепь

Материально-энергетический обмен процесс

Митохондрии роль в энергетическом обмене

Особенности энергетического обмена сердечной мышцы

ЧТО ТАКОЕ ЭНЕРГЕТИЧЕСКИЙ ОБМЕН Как клетка получает и использует энергию

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН И ОБЩИЙ ПУТЬ КАТАБОЛИЗМА

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН. Г.В. Рубцова, НА Павлова, JI.B. Авдеева, А.Е. Губарева

Энергетические затраты организма при относительном покое (основной обмен)

Энергетический баланс углеводного обмена

Энергетический обмен головного мозга

Энергетический обмен и картирование с помощью 2-дезоксиглюкозы

Энергетический обмен клетки

Энергетический обмен между холодными газовыми молекулами и горячей поверхностью графита Перевод Г. К. Соболева

Энергетический обмен регуляция



© 2025 chem21.info Реклама на сайте