Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гамма-лучи, измерение активност

    Для измерения активности источников используют также другую единицу — миллиграмм-эквивалент радия. Это активность такого количества источника гамма-лучей, излучение которого образует в измерительном приборе такую же ионизацию, как 1 мг радия в платиновой оболочке толщиной 0,5 мм. [c.645]

    Для измерения гамма-активности часто используются ионизационные камеры, пригодные также, если они имеют тонкие стенки, для измерения рентгеновских лучей. [c.65]


    Интересные возможности открываются перед методом спектрометрии у-лучей захвата, если использовать измерение мягкой области спектра (О—1 Мэе) с помощью многоканального сцинтилляционного гамма-спектрометра. Как показывают результаты исследований Гринвуда и Рида [95], многие элементы имеют в этой области характерные и хорошо определенные у-линии, пригодные для идентификации и количественного определения элементов. Этот метод, по-видимому, более рационально применять для элементов, которые по тем или иным причинам трудно определять методом наведенной активности. В работах [29, 96] указывается на большие возможности спектрометрии у-лучей захвата в ядерной геофизике для исследования вещественного состава пород, [c.67]

    В качестве изотопной метки во многих случаях используются радиоактивные изотопы, как это было предложено ещё основателями метода меченых атомов Д. Хевеши и Ф. Панетом. Техника регистрации того или иного типа излучения изотопов в настоящее время настолько высока, что позволяет регистрировать буквально отдельные атомы и проводить надёжные количественные измерения, о чём будет идти речь в следующей главе. Например, современные детекторы радиоактивного излучения в состоянии зарегистрировать практически каждую частицу или гамма-квант, образующиеся в процессе распада радиоактивного изотопа [23, 42]. Однако из-за присутствия фонового излучения (источником происхождения которого являются космические лучи, радиоактивность атмосферы и земной коры) частота отсчётов детектора должна превышать некоторый порог, который для грубых оценок по порядку величины можно положить равным 1 импульсу в секунду. Если в детектор попадает 10% частиц, то оказывается, что минимально возможная активность УУ изучаемого образца должна быть порядка 10 распадов в секунду. Как следует из определения активности (1.4.2) число радиоактивных ядер при этом должно составлять  [c.33]

    Разрушение вещества под действием радиоактивного излучения зависит не только от активности источника, но также от энергии и проникающей способности излучения данного типа. В связи с этим для измерения дозы излучения обычно пользуются еще двумя другими единицами - радом и бэром (третья единица, рентген, в сущности представляет собой то же самое, что и рад). Рад (сокращенное название, составленное из первых букв английских слов radiation absorbed Jose, означающих поглощенная доза излучения )-это энергия излучения величиной IIO Дж, поглощаемая в 1 кг вещества. Поглощение 1 рада альфа-лучей может вызвать большие разрушения в организме, чем поглощение 1 рада бета-лучей. Поэтому для оценки действия излучения его поглощенную дозу в радах часто умножают на множитель, измеряющий относительную биологическую эффективность воздействия излучения на организм. Этот множитель, называемый коэффициентом качества излучения (сокращенно ККИ), приблизительно равен единице для бета- и гамма-лучей и десяти для альфа-лучей. Произведение поглощенной дозы излучения (в радах) и ККИ для излучения данного типа дает эквивалентную дозу излучения в бэрах (начальные буквы слов биологический эквивалент рентгена )  [c.265]


    Кипящий, или нсевдоожиженный слой твердых частиц—система, гидродинамически очень сложная. Основной момент, определяющий гидродинамический режим процесса, — это характер движения твердых частиц. Каждая частица испытывает со стороны газового потока подъемную силу, в среднем равную ее весу флуктуации подъемной силы вызывают беспорядочные движения частицы. Если две частицы сближаются, локальная скорость потока в промежутке между ними растет, соответственно уменьшается локальное давление и частицы сближаются еще сильней. Таким образом образуются плотные скопления твердых частиц. Этот механизм исключает существование однородного кипящего слоя как неустойчивого состояния [33]. Обратное воздействие движения твердых частиц на газовый поток заключается в том, что гидравлическое сопротивление слоя становится резко неравномерным по сечению, и значительная часть потока, направляясь по пути наименьшего сопротивления, проходит слой в виде компактных масс —газовых пузырей. Неоднородность кипящего слоя — очевидная теоретически и наблюдаемая как визуально, так и с помощью разнообразных физических методов исследования (оценка локальной плотности слоя путе.м измерения его электрической емкости или поглощения слоем рентге1ювскпх или гамма-лучей) — вызывает резкие различия гидродинамических условий и условий протекания реакций в разных частях газового потока поэтому можно говорить о газе, проходящем в пузырях, и газе, просачивающемся сквозь плотный слой твердых частиц, как о двух разных фазах газового потока. В дальнейшем эти две фазы мы будем называть, пользуясь терминологией предыдущего параграфа, соответственно, пассивной и активной, предполагая, что только газ, находящийся непосредственно в промежутках между частицами катализатора (в активной фазе) может претерпевать химические превращения. Топологически пассивная фаза является прерывной, а активная — сплошной, что иногда используется в качестве их наименований 2. [c.223]

    Последнее десятилетие характеризуется вторжением современных физических методов и аппаратуры в исследовательские лаборатории и нейрохирургические клиники, причем методов, не требующих хирургических вмешательств, как говорят, неразрушающего контроля работы мозга. Это и компьютерная томография, позволяющая путем просвечивания тела тонкими пучками рентгеновских лучей во многих направлениях и последующего обсчета на ЭВМ всей совокупности сигналов для каждого направления восстановить трехмерную картину распределения плотности, т.е. рентгеновский образ тела [213]. Распространение получает метод ЯМР-интроскопии (цойгматографии), позволяющий по магнитному ядерно-резонансному поглощению телом радиоволн в градиентных магнитных полях путем, опять-таки, обсчета очень большого числа отдельных измерений получить трехмерную картину распределения атомов, точнее, ядер определенного типа с резонирующим спином в этом теле [214]. Еще один метод заключается во введении в организм, например путем инъекции, химических веществ, содержащих изотоп, который, распадаясь, излучает гамма-кванты. Применяя множество детекторов излучения, можно по распределению направлений вылета гамма-квантов установить трехмерную картину тех областей в биообъекте, где происходит химическое связывание веществ, содержащих позитронно-активную метку, — это метод создания позитронных изображений [215]. Такими способами можно определить индивидуальные особенности строения мозга, распределение веществ и активность химических процессов, но не картину электрических явлений в мозге, лежащих в основе его функционирования. [c.117]


Физические методы органической химии Том 3 (1954) -- [ c.187 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Гамма-лучи



© 2025 chem21.info Реклама на сайте