Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопные метки

    Усреднение распределения изотопной метки свидетельствует о протекании реакции перегруппировки пероксида. В работе [99] на уровне теории иВЗЬУР/6-311+0( 0 исследованы возможные направления перегруппировки простейшего диацилпероксида (К = Н). Наряду с механизмом а, предполагаюшим образование радикальной пары, рассмотрена возможность [3,3]- и [1,3]-сигматропных перегруппировок б по аналогии с перегруппировками Коупа и Кляйзена для 1,5-диенов. [c.195]


    Во всех трех случаях аллильная частица, вероятнее всего, является первым промежуточным Соединением, адсорбированным на катализаторе, и имеется обширный экспериментальный материал, указывающий, что вторая стадия атаки может произойти на обоих концах этой частицы. С помощью изотопной метки атомов С в пропилене, подвергавшемся превращению в акролеин (на катализаторе Си—О), доказан симметричный характер аллильного промежуточного продукта [60]  [c.162]

    Второе вспомогательное правило состоит в том, что большее массовое число старше меньшего. Это дает возможность принимать во внимание изотопную метку, но только в том случае, когда требования первого вспомогательного правила использованы до конца, но они не дали определенного ответа. [c.160]

    Для изучения закономерностей структурно-изотопных перегруппировок, имеющих место в условиях процессов алкилирования, разработан комплексный метод, позволяющий определять миграцию изотопной метки, фиксированной в исходных модельных соединениях. В основе этого метода [168—171] лежит использование спектроскопии ЯМР, обладающей рядом преимуществ при количественном структурном анализе стабильных протонов водорода и углерода. [c.88]

    На основании полученных ранее экспериментальных данных было высказано мнение, что реакция алкилирования бензола олефинами протекает по электрофильной схеме замещения с промежуточным образованием карбокатионов. Изменение условий экспериментов, природы катализаторов, структуры и длины цепи алкилирующего олефина влияет на соотнощение скоростей реакций алкилирования и изомеризации и тем самым определяет изомерный состав целевых продуктов. В данном разделе будут рассмотрены пути перераспределения изотопной метки О между компонентами реакции алкилирования в зависимости от условий. Для уточнения механизма взаимодействия ароматических углеводородов с олефинами проведено алкилирование дейтеро-обогащенного бензола этиленом, пропиленом, бутеном-1 и буте-ном-2 (табл. 4.2). Полученные алкилбензолы после разделения на препаративном хроматографе анализировали методами ИК-, масс- и ПМР-спектроскопии. [c.89]

    В идеале, для установления механизма фотохимической реакции следовало бы знать состояния всех молекул, участвую-ш,их в реакции, их энергию и время жизни, а также все побочные реакции. Практически далеко не все эти данные бывают доступны. Установление истинных путей превраш,ения всех молекул, поглотивших квант света, и всех свободных радикалов, образуюш,ихся в фотохимическом процессе, представляет собой аналитическую задачу, решение которой до настоящего времени едва ли было возможно... [47]. Методы определения механизмов фотохимических реакций по существу не отличаются от методов определения механизмов обычных органических реакций (гл. 6) идентификация продуктов, изотопная метка, детектирование и улавливание интермедиатов, изучение кинетики. Однако в случае фотохимических реакций появляется ряд новых факторов 1) образование большого числа продуктов, до 10—15 соединений 2) возможность изучать кинетику реакции в зависимости от большего числа переменных, так как на скорость реакции влияет интенсивность или длина волны падающего света 3) возможность детектировать исключительно короткоживущие интермедиаты, используя технику флеш-фотолиза. Кроме того, имеются еще два специальных метода. [c.321]


    Распределение изотопной метки симбатно содержанию 1- и [c.168]

    Со(1И)-триеновые системы удобны тем, что обмен и замещение воды в координационной сфере иона металла — всегда очень медленный процесс от минут до часов), т. е. кинетические параметры можно легко оценить. Медленный обмен лигандов в водном растворе позволяет использовать изотопную метку для прослеживания реакционного пути координированной молекулы воды или гидроксогруппы и, таким образом, дает возможность различить прямой нуклеофильный и общий основной механизмы гидролиза. Однако помимо указанных преимуществ у этих систем имеются и очевидные недостатки, если рассматривать соответствие их (или отсутствие такового) ферментативным процессам. Например, Со(1П)-триеновые комплексы, инициирующие реакции, находятся в сте-хиометрическом, а не каталитическом соотношении с продуктом гидролиза или гидратации, который остается прочно связанным с находящимся в комплексе металлом. По этой причине комплексы Со(П1) не столь пригодны, как могли бы быть, для моделирования ферментов. Тем не менее из-за благоприятного понижения (ДЯ" практически не меняется) при комплексообразовании с подходящими лигандами наблюдалось увеличение скорости в 10 раз. Несмотря ни на что, обсуждаемая здесь система все же неплохая модель, что обусловлено способностью металлов поляризовать прилегающие молекулы субстрата и активировать координированные нуклеофильные группы. [c.356]

    Синтез индолов по Фишеру проходит с расщеплением связи N—N в фенилгидразонах альдегидов и кетонов. Исследования с помощью изотопной метки указывают, что реакция, по-видимому, идет следующим путем  [c.285]

    Точность измерения чисел переноса в методе движущейся границы определяется точностью отсчета положения этой границы. Обычно для этого используют различие в показателях преломле-ичя исследуемого (КС1) и индикаторного (ВаСЬ) растворов, а положение границы раздела в каждый момент времени регистрируется специальной оптической системой. Для регистрации положения границы раздела можно использовать радиоактивные изотопы соответствующих элементов. Определенными достоинствами обладает вариант метода движущейся границы, в котором используются две изотопные метки изучаемого ионного компонента и растворителя (Ю. П. Степанов, А. И. Горшков, 1980). После пропускания определенного количества электричества фиксируют изменение положения обеих меток, что позволяет сразу определить подвижность изучаемого ионного компонента относительно растворителя в целом и не требует введения описанных выше поправок. [c.73]

    Как и в случае 31, эквивалентность всех атомов углерода в соединении 37 была подтверждена с помощью изотопной метки (71]. [c.71]

    Механизм реакции Якобсена не установлен [405], но, вероятно, сульфирующие частицы (см. реакцию 11-7) атакуют ипсо-положение, а освобождающиеся при этом алкильные группы мигрируют в другое положение по меж- или внутримолекулярному пути. Однако предлагались и другие механизмы, один из которых включает образование катион-радикального интермедиата [406]. Экспериментами с использованием изотопной метки показано, что этильная группа мигрирует без внутренней перегруппировки [407]. [c.386]

    То, что в подходящих условиях реакция может идти по этому механизму, было продемонстрировано с помощью изотопной метки [189] и других методов [190]. Однако наличие продуктов диспропорционирования и димеризации не всегда означает, что происходит свободнорадикальный процесс отрыва водорода, и в некоторых случаях те же продукты могут получаться другим путем [191]. Как говорилось ранее (т. 1, разд. 5.11), продукт реакции между карбеном и молекулой может обладать избыточной энергией. Поэтому субстрат и карбен могут реагировать по механизму 1 (процесс прямого внедрения) и образующееся соединение за счет избыточной энергии может распадаться на свободные радикалы. В этом случае свободные радикалы образуются после истинной реакции внедрения. [c.447]

    Первым отрывается наиболее кислый бензильный водород, в результате чего образуется илид 19. Однако перегруппировке подвергается соединение 20, присутствующее в меньших количествах, но сдвигающее равновесие в свою сторону. Показанный механизм является примером [2,3]-сигматропной перегруппировки (см. т. 4, реакцию 18-39). Другой возможный механизм предусматривает действительный отрыв метильной группы (в той или иной форме) от азота и последующее присоединение ее к кольцу. То, что это не так, было показано изучением продуктов с помощью изотопной метки [209]. Если бы второй механизм был верен, из интермедиата 21 должен был образоваться продукт 22, однако в действительности образуется продукт 23, что согласуется с первым механизмом [210]. В опы- [c.42]

    Очевидный способ отличить этот механизм от обычного механизма Е2 заключается в использовании изотопной метки дей- [c.50]

    Для того чтобы мог образоваться илид, необходимо наличие атома водорода в положении а. Механизм подобного типа называют а, р-элиминированием, поскольку р-водород отрывается а -углеродом. Механизм был подтвержден экспериментами с изотопной меткой, подобными описанным для реакции 17-6 [c.52]

    Формально соединение 154 может образовать в результате [2-Ь -f2]-раскрытия цикла, не затрагивающего связь С(1)—С(3), однако изотопная метка показала, что, по крайней мере при использовании комплекса родия, это не так и в действительности разрываются связи С(1)—С(3) и С (2)—С(3) [570]. [c.221]

    Клетка растворителя, удерживая радикалы в виде радикальной пары, способствует обратной их рекомбинации. Поэтому при наличии изотопной метки кислорода карбонила при неполном разложении пероксида в нем обнаруживается усреднение распределения изотопа 0 в результате обмена в радикале [c.272]


    Таким образом, механизм усреднения изотопной метки представляет следующая схема  [c.273]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    В литературе обсуждается вопрос о возможном участии в реакции алкилирования в качестве промежуточных частиц протонированных форм алкилциклопропанов [172, с. 369]. Чтобы выяснить, образуются ли подобные частицы в выбранных условиях, проведено алкилирование бензола [1- С]бутеном-1 при 25 °С. Полученные данные показали (табл. 4.3), что изотопная метка содерл<ится только в метильных группах втор-бутилбензола. Отсутствие изотопа в других положениях бутильной группы позволяет говорить о том, что при алкилировании бензола бутеном-1 в присутствии указанных каталитических систем промежуточные метилциклопропаны практически не образуются. Кроме того, результаты подтверждают сделанный выше вывод [c.94]

    Для выяснения направления расширения пятичленного кольца изучено распределение изотопной метки С в метилтетрали-нах, образующихся при изомеризации 1- п 2-этнл-[а- С] инда-нов в присутствии хлорида алюминия. Доля перехода изотопной метки из метилтетралина во фталевую кислоту, полученную его окислением, соответствует степени миграции экзоцикличе-ского атома углерода в а-положение расширенного цикла. [c.168]

    Распределение изотопной метки С, введенной в а-положе-ние алкильной группы, равно 0,30 0,03. На основании экспериментальных данных механизм превращения фенилциклогексана в выбранных условиях реакции переалкилирования можно изобразить следующей схемой  [c.207]

    Изучение механизма реакции можно начать с измерения скоростей реакций смесей различного состава при разных температурах в дифференциальном реакторе, позволяющем контролировать тепло- и массоперенос. Полезны также изотопные метки и кинетические изотопные эксперименты. Такое исследование может дать достаточно ясное представление о важнейших стадиях реакции, например может позволить определить лимитирующую стадию. Информация о лимитирующей стадии может быть полезной при попытках повысить активность селективного, но относительно мало активного катализатора. Однако глубокое понимание механизма гетерогенных каталитических реакций достигается очень редко. Но благодаря успехам последних лет в приборостроении сегодня имеется больше оснований надеяться на достижение этой цели, чем 10 лет назад. Некоторые детали механизма можно понять, если сочетать тщательные кинетические исследования с подробным описанием катализатора методами хемосорбции, температурно-программированноп десорбции (ТПД), спектроскопических исследований поверхностного слоя, которые позволяют судить и о состоянии поверхно-стп катализатора, и о промежуточных соединениях, образующихся на ней в ходе данной реакции. [c.12]

    Однако ддя более глубокого понимания характера химических превращений, происходящих при карбонизации сернистых остатков нефти, такая информация недостаточна, так как существующие методы определения группового состава не позволяют различить углеводородные и сернистые соединения,, которые группируются в одних и тех же хроматографических фракциях при разделении остатков, например,на силикагеле С 2 2. В этом случае необходимы данные, полученные по В03М02Ш0СТИ на молекулярном уровне,что достигается при использовании модельных соединений, близких по структуре к основным компонентам сырья. Особую ценность имеют результаты радиохимических исследований, позволяхщие, во-первых, получать информацию о превращениях модельных соединений в реальных условиях ведения процесса,поскольку индикаторные количества радиоактивного соединения, вводимого в исходное сырье, практически не меняют его состава. Во-вторых, при введении изотопной метки в различные фрагменты модельного соединения появляется возможность проследить деструктивные превращения соединений. [c.41]

    В третьих, определение местоположения изотопной метки в конечных продуктах дает пря10п) иа юриацию о происходящих химических процессах, недостижшчгю при других методах исследования.  [c.41]

    Насколько велико это число Если 1 л воды, каждая молекула которой содержит изотопную метку, вылить в Мировой океан, то после полного пере-мешив.анпя в 1 л морской воды будут находиться 20 000 меченых молекул воды. [c.14]

    Применение изотопного анализа, особенно для выяснения механизмов реакций, влечет за собой другие многочисленные проблемы, рассмотрение которых выходит за рамки настоящего краткого описания областей применения масс-спектрометрии. Поэтому отсылаем читателя к разделу, посвященному масс-спектрам соединений с изотопными метками, излсженнсму в монографии Бимана [113]. [c.297]

    В 50 неальтернантна, и в соответствующих радикале и анионе (не имеющих ароматического дуэта) электроны занимают разрыхляющие орбитали с более высокой энергией. Как и в случае соединений 31 и 37, эквивалентность трех атомов углерода в трифенилциклопропенил-катионе была продемонстрирована с помощью изотопной метки " С [107]. Получены также интересные дикатионы 52 (R = Me или Ph) [108], которые также должны быть отнесены к двухэлектронным ароматическим системам [109]. [c.78]

    Этот механизм, который представляет собой механизм SnI A, или А1, содержит последовательность стадий, обратную последовательности стадий процесса образования ацеталей при взаимодействии альдегида и спирта (т. 3, реакция 16-6). В поддержку этого механизма свидетельствуют следующие факты [386] 1) в реакции наблюдается специфический катализ ионами НзО+ (см. т. 1, разд. 8.3) 2) взаимодействие в D2O идет быстрее 3) оптически активные ROH не рацемизуются 4) даже в грет-бутиловом спирте связь R—О не разрывается, что доказано с помощью изотопной метки Ю [387] 5) в случае ке- [c.104]

    В больщинстве предлагавшихся механизмов делалась попытка показать, как при варьировании одного процесса могут образоваться все пять продуктов [529]. Важную роль сыграли эксперименты с изотопной меткой, показавшие, что два главных продукта (139 и 140) образуются совершенно разными путями [530]. При проведении реакции с гидразобензолом, меченным по обоим атомам азота, изотопный эффект для образования 139 составлял 1,022, тогда как для образования 140 эта величина была 1,063. Это указывало на то, что в обоих случаях связь N—N разрывается в лимитирующей стадии, но сами эти стадии, очевидно, различны. При проведении реакции с гидразобензолом, меченным " С в /гара-положении, изотопный эффект для образования 139 составлял 1,028, но для образования 140 изотопный эффект практически отсутствовал (1,001). Это может означать только одно для продукта 139 образование новой связи С—С и разрыв связи N—N происходят в лимитирующей стадии иными словами, процесс идет по согласованному механизму. Это объясняет показанная ниже [5,5]-сиг-матропная перегруппировка [531]  [c.216]

    При изучении кинетики реакций в растворах учитываются следующие физические свойства растворов окраска, вращение плоскости поляризации, электрическая проводимость, коэффициент преломления, изменение температуры замерзания. Довольно часто продукты образуются в наномолярных (10 мoль) количествах. В подобных исследованиях применяют чувствительные физические методы, такие, как газовая хроматография, масс-спектрометрия и изотопные метки. [c.112]

    Если расщепление идет по пути а, то при проведении реакции в воде, обогащенной тяжелым изотопом кислорода, должно наблюдаться образование спирта, обогащенного 0, и кислоты, не содержащей изотопной метки, в то время как расщепление по пути б должно приводить к образованию обогащенной 0 кислоты и немеченного спирта. В действительности оказалось, что большинство сложных эфиров образует кислоту, обогащенную 1 0, т. е. что в условиях проведения опыта гидролиз идет путем расщепления связи ацил — кислород. Следует, конечно, иметь в виду, что результаты такого рода опытов имеют смысл только при условии, если исходное вещество и образующиеся продукты (в рассмотренном примере кислота н спирт) не способны обменивать свой кислород на кислород воды, обогащенной изотопом 0 специальными опытами было показано, что в случае рассмотренной реакции такой обмен действительно не происходит. [c.66]

    Соотношение между липофильной углеводородной частью и гидрофильной ионной группировкой в амидных солях типа I таково, что эти соли являются поверхностно-активными агентами, способными в водной среде переводить липиды в коллоидные дисперсии. Желчь, поступающая в кишечник, Эмульгирует нейтральные -жиры и липоидные витамины пищи и тем самым облегчает их проникновение через стенки кишечника в кровь. Исследования, проведенные с использованием изотопной метки, показали, что холестерин яв1яется предшественником в биосинтезе желчных кислот и стероидных гормонов, однако желчь в нормальном организме содержит лишь следы свободного холестерина. В организме человека, а также некоторых животных, запас желчи накапливается в желчном пузыре, связанном с печенью (человек, овцы, крупный рогатый скот) или расположенном внутри печени (акула). [c.639]

    С практической точки зрения важно установить участие всех отдельных компонентов ароматических фракций в образовании смол и асфальтенов. Наибольшую ценность имели бы сведения, полученные для сырьевой модели, фактически не отличающейся от реальных остатков нефти. Извлечение такой информации становится возможным с применением радиоактивных индикаторов. Результаты исследования генезиса углеводородов алкилнафта-линового и алкилфенантренового классов, содержащих изотопную метку углерода — С в ходе окисления гудрона западно- сибирских нефтей изложены в данной статье . [c.72]


Смотреть страницы где упоминается термин Изотопные метки: [c.169]    [c.44]    [c.42]    [c.42]    [c.42]    [c.42]    [c.297]    [c.285]    [c.286]    [c.23]    [c.52]    [c.382]    [c.42]    [c.155]    [c.273]   
Смотреть главы в:

Углубленный курс органической химии Книга 1 -> Изотопные метки

Современная химия координационных соединений -> Изотопные метки

Современная химия координационных соединений -> Изотопные метки

Методы и достижения в физико-органической химии -> Изотопные метки


Углубленный курс органической химии Книга 1 (1981) -- [ c.156 , c.157 ]

Органическая химия (1974) -- [ c.129 , c.130 , c.643 , c.802 , c.816 , c.817 ]

Органическая химия (1979) -- [ c.164 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Биосинтез изотопные метки

Введение изотопной метки

Изотопная метка в масс-спектрометрии

Изотопные метки в биохимических исследованиях

Метаболизм использование изотопных меток

Метод изотопных меток

Определение содержания изотопной метки по интенсивностям сигналов в масс-спектрах органических соединений

Отсутствие перегруппировок свободных радикалов. Изотопные метки

Пиррольное ядро, изотопные метки

Порфобилиноген изотопные метки

Эксперименты с изотопными метками в изучении синтеза мочевой кислоты



© 2025 chem21.info Реклама на сайте