Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ген, амплификация регуляция

    Очевидно, что во всех рассмотренных примерах регуляции активности ферментов важное значение имеет чувствительность биокатализаторов к регуляции, то есть нередко усиление (амплификация) "сигнала может оказать решающее влияние на включение—выключение каскада реакций [c.78]

    Один из основных путей адаптации организмов к изменяющимся условиям окружающей среды — регуля щя экспрессии генов. Этот процесс, детально изученный для бактерий и вирусов, заключается в специфическом взаимодействии определенных белков с различными участками ДНК, расположенными рядом с сайтами инициации транскрипции. Такие взаимодействия могут характеризоваться как позитивным (положительным), так и негативным (отрицательным) влиянием на уровень транскрипции. В эукариотических клетках используются и другие механизмы регуляции транскрипции. В контроле экспрессии генов могут участвовать амплификация, генные перестройки, переключение классов и посттранскрипционные модификации. [c.109]


    Что такое амплификация, каково ее значение в регуляции генной активности  [c.437]

    Многие геномные перестройки не запрограммированы, они не связаны с каким-то специфическим влиянием на экспрессию генов и в них есть э.темент случайности. Случайными могут быть частота таких событий, сами сегменты ДНК или то и другое. Примерами таких довольно редких событий служит транспозиция последовательностей ДНК из одного геномного локуса в другой или дупликация и последующая амплификация сегментов ДНК. Однако сходные транспозиции и амплификации могут быть сопряжены также с неслучайными, запрограммированными изменениями. Такие запрограммированные события играют ключевую роль в регуляции экспрессии некоторых генов во время дифференцировки и развития определенных типов клеток. [c.227]

    В регуляции генной экспрессии в процессе развития иногда участвует запрограммированная амплификация специфических сегментов ДНК. Это четко показано для некоторых простейших, беспозвоночных и позвоночных. В каждом случае в результате амплификации в специфических клетках в определенный момент времени образуется огромное число генных копий, в результате чего синтезируется большое количество важного генного продукта. Однако молекулярные стратегии, используемые для амплификации в конкретных случаях, существенно различаются. [c.302]

    Читатель найдет в этой книге подробные сведения о механизмах трансляции, транскрипции, репликации, амплификации, рестрикции-модификации и рекомбинации генов, о сплайсинге про-мРНК, о процессинге белков, о структуре и функционировании обычных генов, множественных генов и мобильных генетических элементов, о регуляции экспрессии генов, прежде всего регуляции транскрипции, о структурной организации хромосом и, наконец, о механизмах иммунного ответа. [c.5]

    Опухолевые клетки нередко обнаруживают аномальную вариабельность формы и размеров ядер (рис. 21-19), а также числа и структуры хромосом и на практике изменения в морфологии ядер являются для патологов одним из ключевых признаков в диагностике рака. Нри культивировании опухолевых клеток их кариотип часто оказывается крайне нестабильным могут наблюдаться амплификация или делеция генов, потеря, дупликация или транслокация хромосом (или их участков) - все это регистрируется с гораздо большей частотой, чем нри культивировании нормальных клеток. С одной стороны, такая вариабельность в числе и структуре хромосом может быть просто следствием ускорения клеточного цикла, возникающего в дифференцированной клетке из-за ее слабой адаптации к быстрой пролиферации. С другой стороны, это может отражать наследуемый дефект в самом механизме или регуляции процессов репарации, ренликации или рекомбинации ДНК, возникающий в результате соматической мутации в любом из множества вовлеченных в эти сложные процессы генов. Такая мутация будет увеличивать вероятность всех последующих мутаций в других группах генов. Поэтому можно ожидать, что описанный механизм является общим для клеток, претерпевших множество мутаций, необходимых для превращения их в злокачественные. Предположим, к примеру, что для трансформации нормальной клетки в опухолевую необходимы три мутации в генах, контролирующих новедение клеток, и что вероятность каждой такой мутации за время жизни человека составляет 10 " на клетку Тогда вероятность того, что одна нормальная клетка успеет (даже за весь указанный промежуток времени) накопить эти три мутации, будет Ю х Ю х 10 = 10 . Но допустим теперь, что скорость мутирования возросла из-за предшествующей мутации [c.463]


    Хотя современный этап селекционной работы с микроорганизмами характеризуется преобладанием классических подходов , связанных с использованием индуцированного мутагенеза и ступенчатого отбора, в практической деятельности микробиологов-селекционеров все шире применяются новые методы — слияние протопластов, амплификация и межвидовой перенос генов. Однако арсенал современной генетиг ки недостаточно используется для создания высокоактивных промышленных штаммов. Основная причина этого — слабая генетическая и биохимическая изученность микроорганизмов, градиционно используемых в промышленности, недостаток знаний о регуляции их клеточного метаболизма в целом, а также отдельных путей биосинтеза, связанных с образованием особо ценных биологически активных соединений, например антибиотиков. Именно здесь целесообразно сконцентрировать усилия генетиков, биохимиков и молекулярных биологов, в тесном контакте с которыми должны работать селекционеры. [c.203]

    Изучение механизма регуляции репликации фактора R1 привело Дж. Ларсена с соавторами (1984 г) к созданию нового типа векторных плазмид серии pOU. Поскольку интенсивность репликации плазмиды R1 находится в прямой зависимости от уровня синтеза белкового продукта плазмидного гена герА, авторы сконструировали гибридные плазмиды, у которых в непосредственной близости от гена герА встроен фрагмент ДНК фага Я, содержащий ген l857 и промотор pR, направленный в сторону гена герА. При температуре ниже 35 °С в клетке находится примерно 1 молекула плазмиды серии рОи. При температуре 42 °С в результате инактивации термочувствительного репрессора с1857 происходит дерепрессия промотора pr, приводящая к конститутивной неконтролируемой репликации плазмиды. Уже через 1-2 ч после термоиндукции плазмидная ДНК составляет половину всей ДНК клетки (более 1 ООО копий на клетку). Параллельно с амплификацией плазмиды происходит и сверхсинтез кодируемых ею белков. [c.140]

    Опухолевые клетки нередко обнаруживают аномальную вариабельность формы и размеров ядер (рис. 21-19), а также числа и структуры хромосом, и на практике изменения в морфологии ядер являются для патологов одним из ключевых признаков в диагностике рака. При культивировании опухолевых клеток их кариотип часто оказывается крайне нестабильным могут наблюдаться амплификация или делеция генов, потеря, дупликация или транслокация хромосом (или их участков) - все это регистрируется с гораздо большей частотой, чем при культивировании нормальных клеток. С одной стороны, такая вариабельность в числе и структуре хромосом может быть просто следствием ускорения клеточного цикла, возникающего в дифференцированной клетке из-за ее слабой адаптации к быстрой пролиферации. С другой стороны, это может отражать наследуемый дефект в самом механизме или регуляции процессов репарации, репликации или рекомбинации ДНК, возникающий в результате соматической мутации в любом из множества вовлеченных в эти сложные процессы генов. Такая мутация будет увеличивать вероятность всех последующих мутаций в других группах генов. Поэтому можно ожидать, что описанный механизм является общим для клеток, претерпевших множество мутаций, необходимых для превращения их в злокачественные. Предположим, к примеру, что для трансформации нормальной клетки в опухолевую необходимы три мутации в генах, контролирующих поведение клеток, и что вероятность каждой такой мутации за время жизни человека составляет 10 на клетку. Тогда вероятность того, что одна нормальная клетка успеет (даже за весь указанный промежуток времени) накопить эти три мутации, будет 10 х 10 х 10 = 10 . Но допустим теперь, что скорость мутирования возросла из-за предшествующей мутации в каком-нибудь из ферментов системы репликации или репарации ДНК и достигла 10 /клетку за время жизни человека. Приняв вероятность этой мутации в системе репарации/репликации стандартной - 10 , мы увидим, что этот путь, который начинается с мутации, увеличивающей мутабильность, приведет к более частому возникновению раковых клеток суммарная вероятность превращения клетки в раков ю составит в течение жизни 10 х 10 " х 10 " х 10 = 10 . Это в 100 раз более вероятно, чемв первом случае, хотя и требует не трех, а четырех мутаций [c.463]

    Аналогичный эффект может быть получен и в результате повышения концентрации ферментов, что достигается, например, амплификацией генов, контролируюш,их синтез соответствуюш,его фермента. Наиболее распространенным способом регуляции активности метаболических реакций в ьслетке является регуляция по типу ретроингибирования. [c.21]

    В первой из трех глав части III (гл. 8) приведены данные о структуре генов эукариот и современные представления о механизме их экспрессии, в частности сведения о сложных сигналах регуляции транскрипции, а также о происхождении, локализации и структуре ингронов и тех механизмах, с помощью которых интроны удаляются из первичных транскриптов при сплайсинге. Очень существенным здесь явилось применение обратной генетики-введение специфических мутаций в определенные сегменты ДНК и последующий анализ структурно-функциональных взаимоотношений в генах эукариот. В гл. 9 основное внимание сосредоточено на организации сложных эукариотических геномов. Рассмотрено расположение генов и других элементов в молекуле ДНК, в частности в центромерных и теломерных областях. Красной нитью через всю главу проходит концепция генома как летописи эволюционной истории. В заключение дано описание геномов внутриклеточных орга-нелл-митохондрий и хлоропластов. В гл. 10 представлены механизмы случайных и неслучайных перестроек геномной ДНК. Речь идет об амплификациях, делециях и транспозициях—как неза-нрограммнрованных и приводящих к мутагенезу, так и запрограммированных в геноме и осуществляющих точную регуляцию генной экспрессии, например изменение типов спаривания у дрожжей и образование генов иммуноглобулинов. [c.7]


    Каскад ферментативных реакций в регуляции обмена гликогена аналогичен каскаду протеолитических реакций при свертывании крови (разд. 8.17). В обоих случаях ферментативный каскад создает высокую, степень амплификации, В случае распада гликогена имеются три ферментативные стадии контроля, тогда как при синтезе гликогена таких стадий две. Если бы имела место прямая регуляция гликоген-фосфо-рилазы и гликоген-синтазы путем связывания адреналина, количество гормона, необходимое для усиления распада гликогена, было бы более чем в тысячу раз выше того количества, которое требуется в присутствии амплифицирующего каскада. [c.128]


Смотреть страницы где упоминается термин Ген, амплификация регуляция: [c.200]    [c.200]    [c.73]    [c.464]    [c.108]    [c.186]    [c.256]    [c.446]    [c.464]    [c.108]   
Биохимия человека Т.2 (1993) -- [ c.109 , c.126 ]

Биохимия человека Том 2 (1993) -- [ c.109 , c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте