Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генная инженерия промышленно важных микроорганизмов

    Генная инженерия промышленно важных микроорганизмов [c.163]

    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]


    Приемы конструирования штаммов методами генной инженерии во многом зависят от целей промышленности. Наиболее ясная и лучше всего разработанная задача — это производство методами микробиологического синтеза белков человека, важных для медицины, или белков сельскохозяйственных животных для целей ветеринарии. С точки зрения генной инженерии эта задача сводится к введению чужеродного гена в удобный для промышленного производства микроорганизм и оптимизации его экспрессии, [c.97]

    Генетическая инженерия — важнейший прогрессивный способ изменения генетической программы организма в целях создания высокопродуктивных штаммов промьпштенных микроорганизмов. Успехи современной генетической инженерии сушественно влияют на промышленную биотехнологию. Яркий пример больших возможностей генетической инженерии — создание во ВНИИ генетики и селекции промышленных микроорганизмов штамма Е. oli для получения треонина. В результате были изменены не только регуляторные свойства фермента аспартаткиназы, но и питательные потребности штамма. Введение в геном бактерии нового гена обеспечило бактерии возможность использования в качестве источника углерода сахарозу, основного дисахарида традиционного промышленного сырья — свекловичной мелассы. Перечисленные манипуляции наряду с амплификацией плазмид, содержащих оперон треонина, позволили значительно увеличить производительность штамма бактерии и получить за 40 ч ферментации 100 г L-треонина на 1 л культуральной жидкости. Учитывая исключительные способности штамма Е. соН к сверхсинтезу L-треонина, японская фирма Адзиномото приобрела в 1982 г. лицензию на использование российского штамма — продуцента треонина для организации собственного производства. [c.50]

    Таким образом, перемещающиеся генетические элементы индуцируют все виды хромосомных перестроек слияние и диссоциацию репликонов, транслокации, делеции, инверсии и дупликации. Вместе с плазмидами и фагами они переносят гены между видами бактерий, подчас весьма отдаленными, и следовательно, играют важную роль в эволюции микроорганизмов. Новые возможности открывает использование мигрирующих элементов в генетическом конструировании. На основе их применения создаются методы транспозонного мутагенеза и генетической инженерии in vivo, существенно ускоряется разработка частной генетики бактерий, имеющих важное промышленное значение (N. Kle kner et al., [c.109]


    Все рассмотренные выше методы селекции продуцентов биологически активных веществ сегодня, в период интенсивного развития методов генной инженерии, называют традиционными методами. Эти методы в прошедшие 30 лет в огромной мере содействовали созданию микробиологической промышленности антибиотиков, аминокислот, ферментов, витаминов и других практически важных веществ. Исчерпали ли традиционные методы свои возможности Нам кажется, думать так преждевременно, как и надеяться на то, что генная инженерия в ближайшее время сможет быть применена для создания и улучшения обширного круга принадлежащих к разным таксономическим группам продуцентов, которыми располагает сейчас микробиологическая промышленность. Даже более реальная возможность использовать иа основе генноинженерных методов в качестве продуцентов микроорганизмы, для которых эти методы наиболее отработаны, например E sheri hia oli, едва ли удовлетворит промышленность числом продуктов микробного синтеза. В связи с этим очень важно для старых перспективных в промышленном отношении микроорганизмов, помимо совершенствования методов отбора нужного типа мутантов, развивать методы генетического обмена на основе слияния протопластов, трансдукции, трансформации хромосомной и плазмидной ДНК, которые расширяют возможности традиционных методов селекции. Вместе с тем у промышленных микроорганизмов все шире проводится поиск плазмид и предпринимаются попытки их использования в качестве векторов при переносе генетического материала, его клонировании и амплификации. Эти исследования важны для понимания генетического контроля сложных процессов синтеза, таких, иапример, как синтез антибиотиков, для выявления узких мест в биосинтезе многих других продуктов. Одновременно они приближают промышленные микроорганизмы к объектам генной инженерии. Методология генной инженерии постоянно совершенствуется и расширяет свои возможности. В таком успешном встречном развитии разных методов и их слиянии на все большем числе продуцентов можно представить себе ближайшее будущее селекции микроорганизмов, призванной обеспечить промышленность высокопродуктивными штаммами. [c.95]

    В течение 1977—1980 гг. во ВНИИ генетики и селекции промышленных микроорганизмов на базе лабораторного штамма Е. соИ К-12 с использованием методов генной инженерии впервые в мире был сконструирован эффективный штамм-продуцент L-треонина — важной незаменимой аминокислоты. Эта работа объединила исследователей из разных лабораторий, которые первоначально независимо друг от друга занимались изучением регуляции активности генов биосинтеза треонина (Р. С. Шаку-лов и сотр.), селекцией штаммов-продуцентов треонина (Н. И. Жданова и сотр.) и клонированием генов, контролирующих синтез треонина на многокопийных плазмидах (В. Г. Дебабов и сотр.). [c.181]


Смотреть страницы где упоминается термин Генная инженерия промышленно важных микроорганизмов: [c.96]    [c.96]   
Смотреть главы в:

Современные методы создания промышленных штаммов микроорганизмов -> Генная инженерия промышленно важных микроорганизмов




ПОИСК





Смотрите так же термины и статьи:

Генная инженерия



© 2025 chem21.info Реклама на сайте