Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сохранение массы при седиментации

    Наряду с моделями, основанными на экспериментальном исследовании свойств неоднородных смесей, предложен ряд теоретических моделей. Так, в 42] при рассмотрении монодисперсной системы, в которой отсутствуют взаимодействия между частицами, периодическая седиментация описывается с помощью уравнений сохранения массы и движения для сплошной и дискретной фаз [c.293]


    Только что приведенный вывод был дан Гольдбергом . Его важность заключается в том, что он зависит, по существу, только от закона сохранения массы. Более того, он является независимым от формы седиментационной границы или от типа зависимости 5 от концентрации. Он не только дает критерий, с помощью которого мы можем решить, является ли уравнение (22-6) применимым, но также показывает, как лучше определить з, когда этот критерий не удовлетворяется. Наконец, этот вывод показывает, что коэффициент седиментации, который мы определяем, соответствует концентрации Ср в области плато, а не концентрации при г . [c.428]

    Не боясь повториться, отметим, что моделирование экосистем больших стратифицированных озер требует применения трехмерных моделей ввиду огромного разнообразия гидрофизических условий в водоеме, связанного именно с большими размерами водоема. Эти модели должны воспроизводить процессы трансформации органического вещества и биогенов, перенос, седиментацию и турбулентную диффузию субстанций. Важным свойством моделей экосистем является выполнение для них закона сохранения веществ при отсутствии источников и стоков или законов изменения, если есть обмен веществом на границах водоема. Выполнение законов сохранения обеспечивается, с одной стороны, согласованностью моделей экосистем с моделями гидродинамики водоема, для которых выполняется закон сохранения массы воды, с другой — соответствующей требованию консервативности конструкцией операторов, описывающих трансформацию органического вещества и биогенов. [c.177]

    Анализ физических процессов, происходящих в установках подготовки нефти, газа и конденсата, позволяет сделать вывод, что основными процессами являются разделение фаз (жидкости от газа, газа от жидкости, жидкости от жидкости, твердых частиц примеси от газа или от жидкости), а также извлечение определенных компонент из газовой или жидкой смеси. В специальной литературе, посвященной этим процессам, каждый процесс имеет свое название. Так, процесс отделения жидкости от газа или газа от жидкости называется сепарацией, жидкости от жидкости — деэмульсацией, разделение суспензий, т. е. жидкостей или газов с твердыми частицами, — седиментацией и т. д. С физической точки зрения любой из перечисленных процессов происходит под действием определенных движущих сил, заставляющих фазы или компоненты одной из фаз разделяться. Для гетерогенных смесей такими движущими силами являются силы гравитации, инерции, поверхностные и гидродинамические силы, электромагнитные силы и термодинамические силы. Для гомогенных смесей, например смеси газов или растворов, движущими силами являются градиенты концентраций, температуры, давления, химических потенциалов. Математическое моделирование этих процессов основывается на единых физических законах сохранения массы, количества и момента количества движепшя, энергии, дополненных феноменологическими соотношениями, конкретизирующими модель рассматриваемой среды, а также начальными и граничными условиями. Сказанное позволяет объединить все многообразие рассматриваемых физических процессов в рамках единой теории сепарации многофазных многокомпонентных систем. Для лучшего понимания специального материала в разделах П1 —УП в разделе П изложены физико-химические основы процессов. [c.43]


    При выборе улавливающего оборудования необходимо учитывать последующую обработку материала. Если требуется определить только его общее количество, можно применять практически любой из приведенных выше методов, поскольку улавливающее устройство можно взвесить до и после отбора пробы, и вычислить чистую массу образца. Если образец должен далее подвергнуться химичеокому анализу, его необходимо собрать с фильтра, либо смывая, либо используя растворитель в качестве фильтрующей среды. Возможно, требуется определить гранулометрический состав частиц, тогда решение проблемы связано с значительными техническими затруднениями. Если для определения размеров частиц будет использован метод жидкостной седиментации, или декантации, тогда фильтр можно прамьгвать седиментационной жидкостью. Однако как для воздушной, так и для жидкостной классификации и седиментации основным остается вопрос о сохранении размеров частиц и апромератов такими, какими они были в газовом потоке. [c.89]

    Основное применение (со)полимеров АА - использование в качестве флокулянтов. Большая часть производимых в СССР и во всем мире (со)полимеров АА находит практическое применение в качестве флокулянтов в горнодобывающей, бумажной, металлургической, легкой, пищевой, угольной, не фтедобывающей промышленности. Более подробно остановимся именно на этой области применения (со)полимеров АА. Действие высокомолекулярных водорастворимых флокулянтов [в том числе и (со)полимеров АА] основано главным образом на двух механизмах. Первый - мостичный механизм флокуляции макромолекулы адсорбируются на взвешенных частицах, связывая их в единый ансамбль - флокулы [24]. Второй - нейтрали-зационный механизм флокуляции заряженные макроионы адсорбируются на заряженных дисперсных частицах, нейтрализуя их и тем самым снижая кинетическую (седиментационную) устойчивость системы [25]. Для (со)полимеров АА высокой молекулярной массы определяющим является, как правило, мостичный механизм флокуляции. Эффективность действия (со)полимеров АА для реальных дисперсных систем зависит от большого числа параметров, во многих случаях затруднена оценка влияния каждого конкретного фактора на результирующий макроскопический флокулирующий эффект, поэтому возникла необходимость всесторонних исследований (со)полимеров АА как флокулянтов прежде всего на модельных дисперсных системах (ДС). В качестве модельных ДС были апробированы охра, каолин и оксид меди. Влияние различных факторов на флокулирующие показатели (со)-полимеров АА приведено в обзоре [26]. Эксперименты были спланированы таким образом, чтобы обеспечить конкретную оценку влияния лишь одного параметра системы при сохранении неизменными всех других параметров. Рассмотрим влияние отдельных факторов на процесс флокуляции (со)полимеров АА в модельных ДС. При использовании ПАА и сополимеров на основе АА для ускоренной седиментации реальных ДС концентрация дисперсной фазы Сд может изменяться в широких пределах - от 0,002 до 40-50%. С ростом Сд закономерно уменьшается расстояние между частицами, растет суммарная поверхность раздела фаз. На модельных ДС были изучены особенности флокуляции (со)полимерами АА при варьировании Сд включая и область стесненного оседания (Сд>3%) [25]. Для количественной оценки флокупирующего эффекта используется безразмерный параметр В [27] D = v/vo-l, где м и о скорость седиментации соответственно с добавкой и в отсутствие флокулянта. Если Б > О, то полимерная добавка выступает в роли флокулянта, и чем больше О, тем выше флокулирующий эффект за счет вводимой добавки. Если же О < О, то вводимая добавка полимера работает как стабилизатор, т. е. способствует повышению седиментационной устойчивости системы. Использование относительного параметра В вместо V для оценки флокули- [c.175]


Биофизическая химия Т.2 (1984) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Седиментация

Седиментация седиментации



© 2025 chem21.info Реклама на сайте