Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие между частицами

    Какова природа сил Ван-дер-Ваальса Какой вид взаимодействия между частицами приводит к переходу в конденсированное состояние N6, N2, Ш, СЬ, ВРз, Н2О  [c.72]

    Мы видим, что электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, с точки зрения теории химической связи во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная ковалентная связь. Вещества, являющиеся донорами электронных пар, часто называют основаниями по Льюису, акцепторы электронных пар — кислотами по Льюису. [c.252]


    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]

    Рассмотрим кинетику медленной коагуляции мелких частиц. Интерпретация медленной коагуляции, данная Смолуховским, покоится на формальных положениях, лишь значительно позднее была сделана попытка связать медленность процесса коагуляции (агрегации) с взаимодействием между частицами. Теория медленной коагуляции Смолуховского выводится из теории, рассмотренной в предыдущем разделе. Он допускает, что различие между быстрой и медленной коагуляцией (агрегацией) состоит в том, что в первом случае каждое столкновение приводит к слиянию, тогда как во втором случае эффективной является только лишь часть столкновений й. Тогда константа коагуляции (агрегации) в этом случае имеет вид [82] [c.92]

    Если для конкретного сыпучего материала при постоянных влажности и температуре получить эксперимента,тьно несколько пар значений п то можно построить графическую зависимость предельного сопротивления сдвигу от нормального напряжения в плоскости скольжения (рис. 5.3). Для сыпучих материалов, у которых аутогезионные силы взаимодействия между частицами практически отсутствуют (несвязные сыпучие материалы), изменение а не влияет на плотность упаковки частиц и прочность материала, поэтому все опытные точки ложатся на одну прямую. [c.152]

    При описании гидромеханики псевдоожиженного слоя независимые переменные, отражающие движение твердых частиц и ожижающего агента, быстро изменяются на участке- пути, сопоставимом с размерами частиц. Между тем, в ряде предложенных уравнений авторы оперируют (с оговорками или без них) сглаженными переменными, характеристики которых усреднены по области, значительно превышающей размер частиц, но малой по сравнению с размерами всей системы. Полученные уравнения описывают движение ожижающего агента и твердых частиц как двух взаимнопроникающих сплошных сред такой метод уже содержит некоторые существенные допущения. Например, для области, по которой усредняется скорость частиц в окрестности данной точки, в действительности существует некоторое распределение скоростей, так что поведение системы, вообще говоря, предопределено характером этого распределения, а не средним значением скорости. Такая ситуация обычна для задач неравновесной статистической механики, причем известно, что описывать движение, используя локальную усредненную скорость, допустимо только в том случае, когда взаимодействие между частицами характеризуется достаточной силой и частотой, чтобы обеспечить квазиравновесное распределение скоростей. [c.75]


    При бесконечно большом разбавлении силы взаимодействия между частицами растворенного вещества становятся исчезающе малыми, активность в этих условиях совпадает с концентрацией  [c.76]

    Силы взаимодействия между частицами вещества в жидком состоянии достаточно прочны, чтобы препятствовать беспорядочному перемещению частиц, но все же недостаточны для прекращения их перемещения относительно друг друга. [c.119]

    Кинетическая теория равновесия позволяет достаточно простым способом описать свойства разреженного газа, состоящего из жестких сферических молекул. Однако она становится все более сложной и трудной для приложения как в случае плотных систем, так и в случае систем, в которых имеются силы взаимодействия между частицами. Чтобы рассмотреть такие системы, мы кратко в общих чертах рассмотрим здесь очень эффективный статистический метод Гиббса [1—4]. [c.174]

    В смеси двух жидкостей А и В, состоящих из молекул с малополярными ковалентными, связями, энергия взаимодействия частиц А и В не будет существенно отличаться от энергин взаимодействия между частицами А и А или частицами В и В. Поэтому различные жидкости с ковалентной связью в молекулах обычно неограниченно растворяются друг в друге. По этой же причине и молекулярные кристаллы обычно хорошо растворяются в таких жидкостях. Например, растворимость толуола в бензоле не ограничена, а кристаллический нафталин хорошо растворим в неполярных жидкостях. [c.235]

    Исключения будут только для случаев заметного взаимодействия между частицами растворенного вещества или между растворителем и частицами одного или большего числа растворенных веществ. В обоих этих случаях, однако, на наличие взаимодействия будут указывать как выделение энергии, так и очень сильное отрицательное отклонение от закона Рауля для растворенного вещества энергия его испарения будет больше. Соответственно с этим будет наблюдаться компенсирующее падение эффективного свободного объема растворенного вещества. Так как энергетический член находится в экспоненте, он будет оказывать преобладающее влияние. В результате равновесие окажется сдвинутым в сторону образования более сильно сольватированных частиц. [c.435]

    Газы, которые отклоняются от идеального состояния, носят название реальных газов. Чем больше плотность и давление газа, тем больше взаимодействие между частицами, а следовательно, тем больше газ отклоняется от идеального состояния. [c.44]

    Таким образом, в псевдоожиженном слое с правильным уравнением течения сила сдвига и сила тяжести — величины одного порядка и превышают силу взаимодействия между частицами. Если сила трения между частицами значительно больше силы тяжести, то в таких системах правильная диаграмма сдвига не получается. [c.245]

    Взаимодействие между частицами адсорбата и адсорбента может иметь различный характер. [c.437]

    Записав граничные условия исходя из постулата о радиальном и симметричном потоке, авторы получили численные решения уравнений количества движения и неразрывности для принятых рд, < е, Qs и "т/, рассчитав распределение давлений, порозности, скоростей газа и твердых частиц на подходе к отверстию. Как для двух-, так и для трехмерного потока, как показывает анализ, следует ожидать быстрого падения порозности и крутого градиента давления в области О < г/г,, < 1. Однако, опыты с песком (100 мкм) и стеклянными сферами (500 мкм) в двухмерных слоях высотой 2,5 м, шириной 61 см, и толщиной 1,27 см обнаружили значительно меньшие изменения параметров, чем это следует из теоретических расчетов. По измеренным давлениям при истечении из горизонтальных щелей высотой 1 см и 2,5 см получены профили, очень сходные с найденными ранее для меньших отверстий (рис. ХУ-5, г) и согласующиеся с допущением о постоянной порозности. Измерения емкостным датчиком показали, что вблизи отверстия порозность слоя, действительно практически постоянна. Авторы объяснили эти расхождения возможной неадекватностью постулата о радиальном и симметричном потоке. Было выявлено существование застойных зон (в некоторой степени они сходны с показанным на рис. ХУ-5, в) и сделано предположение о возможном влиянии сил взаимодействия между частицами на режимы движения. [c.580]

    Опытные данные для каждого насадка при различных давлениях истечения удовлетворительно коррелируются уравнением тина (XV,1), но значения СЬ, хотя и превышают 0,5, никогда не достигают ожидаемой величины, т. е. 1. Если базироваться на аналогии с капельными жидкостями, то увеличение расхода псевдоожиженного твердого материала при истечении из насадков по сравнению с отверстиями в плоской стенке объясняется отсутствием сужения струи на выходе. Мы видели, однако, что сужения струи не происходит и в обычном отверстии таким образом, эффект применения профилированного насадка сводится к уменьшению сил взаимодействия между частицами. [c.582]


    По мере повышения концентрации раствора, как правило, усиливается интенсивность взаимодействия между содержащими его частицами и усложняется его структура наоборот, по мере уменьшения доли растворенного вещества строение раствора упрощается и взаимодействие между частицами ослабевает. Все это делает понятной огромную сложность развития количественной теории концентрированных растворов. До сих пор не удалось полностью выяснить ни состав, ни пространственную конфигурацию продуктов взаимодействия, природу связи в них, взаимодействия между частицами растворенного вещества. Сложность взаимодействия в растворах усугубляется отсутствием математической теории строения жидкостей. Поэтому разработка теории растворов высокой концентрации — дело [c.134]

    Близки к идеальным крайне разбавленные растворы различных веществ в них можно пренебречь взаимодействием между частицами растворенного вещества из-за их разобщенности (см.гл. II). Однако уподобить поведение растворенного вещества в разведенных растворах поведению разреженного газа (а растворителя — вакууму) и основывать на этой аналогии все рассуждения и выкладки было бы опрометчивым. Такая аналогия носит скорее формальный характер. Ведь строение жидких и твердых растворов отвечает структуре вещества не в газообразном, а в конденсированном состоянии. [c.137]

    Наряду с моделями, основанными на экспериментальном исследовании свойств неоднородных смесей, предложен ряд теоретических моделей. Так, в 42] при рассмотрении монодисперсной системы, в которой отсутствуют взаимодействия между частицами, периодическая седиментация описывается с помощью уравнений сохранения массы и движения для сплошной и дискретной фаз [c.293]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами четвертого уровня, существенный вклад вносят эффекты пятого уровня. Так, увеличение мощности на перемешивание приводит, с одной стороны, к увеличению частоты столкновений кристаллов, возрастанию кинетической энергии частиц. Рост кинетической энергии частиц приводит к более быстрому преодолению потенциального барьера, возникающего между частицами за счет сил отталкивания, что в свою очередь способствует агрегации кристаллов. С другой стороны, увеличение мощности на перемешивание приводит к таким явлениям в ансамбле кристаллов, как дробление, истирание кристаллов, появление вторичных зародышей. Явления вторичного зародышеобразования могут протекать только на четвертом уровне. Вторичные зародыши образуются при столкновениях кристалл — кристалл, кристалл — мешалка, кристалл — стенка аппарата. [c.10]

    Жидкие растворы. Исследование свойств жидких растворов давно уже привлекало к себе внимание, и изучению их посвящено очень больщое число работ. Виднейшие физико-хими-ки в той или иной степени участвовали в их изучении. В результате тщательного изучения свойств водных растворов серной кислоты, водных растворов этилового спирта и ряда других систем Менделеев впервые показал (1865—1887) больщое значение всех видов взаимодействия между частицами компонентов для свойств растворов. [c.297]

    Менделеев рассматривал растворы как неустойчивые химические соединения постоянного состава, находящиеся в состоянии частичной диссоциации , причем равновесие в этих процессах является динамическим равновесием. Этим было положено начало теории растворов, учитывающей значение не только физической стороны явлений, но и химического взаимодействия между частицами компонентов. Д. И. Менделеев неоднократно подчеркивал, что обе стороны явления в растворах неразрывно связаны между собой. [c.297]

    Эта величина не меньше энергии, рассчитанной для диполь-диполь-ного взаимодействия . Индуцированный дииоль около 1 дебая. Хотя взаимодействия ион — молекула могут и не отличаться ио величине от ион-дипольного взаимодействия, но они гораздо сильнее уменьшаются с увеличением расстояния между ионом и молекулой, а потому не могут рассматриваться как силы, действующие на большом расстоянии. Важно также отметить, что поляризация всегда вносит некоторый вклад в общее взаимодействие между частицами. Взаимодействие между ближайшими частицами только за счет эффекта поляризации может составлять несколько килокалорий. [c.446]

    Таким образом, при погружении металла в воду или в раствор, содержащий ионы, данного металла, на поверхности раздела металл раствор образуется двойной электрический слой и возникает разность потенциалов скачок потенциала) между металлом и раствором. Величина этой разности потенциалов зависит от свойств металла и раствора, в особенности от концентрации ионов данного металла в растворе и от характера взаимодействия между частицами в двойном электрическом слое. [c.417]

    Если частицы обоих видов не содержат полярных групп и не образуют между собой водородных или других достаточно прочных связей (например, при растворении каучука в бензоле или вообще углеводорода в углеводороде), то взаимодействие между частицами в этом случае определяется сравнительно слабыми дисперсионными силами ( 27 ). Эти силы могут преодолеваться тепловым движением молекул растворителя и звеньев цепей [c.599]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    У денствптелыгостп стандартное состояние но может быть состоянием прп бесконечном ра. шеденни, так как оно должно представлять собой определенное термодинамическое состояние с фиксированным составом. Мы понимаем иод бесконечным разведением такое состояние системы, в котором взаимодействие между частицами растворенного вещества пренебрежимо мало, и в реальном стандартном состоянии система будет иметь, следовательно, некоторый состав, отвечающий этому идеальному условию. На практике чаще всего для обозначения концентрации пользуются молярностями, а за стандартное состояние обычно выбирается гипотетический одномолярный раствор , т. е. 1 М раствор, в котором взаимодействие растворенного вещества и растворителя равно нулю. [c.431]

    Особенностью адсорбционных взаимодействий, отличающе их от взаимодействия между молекулами в газах, является весьма тесное сближение молекул адсорбата с атомами, ионами или молекулами, образующими поверхность адсорбента. Вследствие этого взаимодействие между частицами адсорбата и адсорбента аналогично взаимодействиям в конденсированных средах, например в растворах, где расстояния между частицами также весьма малы. Поэтому явление адсорбции часто имеет много общего с молекулярной ассоциацией в жидкостях. [c.438]

    Каждая из исходных молекул, взаимодействуя со свободной валентностью поверхности (рис. XIII,16), образует частицы, одна из которых связана слабой, а другая прочной гомеополярной связью с поверхностью. Взаимодействие между частицами, связанными слабой связью, можёт приводить к образованию продукта реакции. Частицы, связанные прочной связью, в результате предварительного перехода в состояние со слабой связью также оказываются способными к химическому взаимодействию. [c.368]

    Растворы подчиняются закону Рауля, если силы взаимодействия между частицами разных веществ (А — В) равны силам, действующим между частицами одного и того же вещества (А — А и В — В), причем смешение кo шoнeнтoв не сопровождается ни гкэглощением, ни выделением теплоты или изменением объема. Таким образом, Аи = 0 АН = 0. [c.196]

    При наличии в промышленных сыпучих материалах аутогезион-ных сил взаимодействия между частицами связь между предельным сопротивлением и нормальиымц напряжениями в плоскости скольжения слоев один относительно другого выражается законом Кулона [c.152]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    Наличие сил взаимодействия приводит к необходимости более четко определить такие понятия, как соударение и область взаимодействия реагирующих частиц. Хотя эти термины и относятся к числу понятных всем, однако они не столь очевидны, как это кажется. Так, для жидкости понятие соударение вообще не идентифицировано. Следуя [1], будем называть областью взаимодействия область, ограниченную условием < г < г .х-Ограничение снизу с очевидно — это радиус жесткой оболочки частицы в модели жестких сфер, верхняя н е граница Гд х задается из условия, что силы взаимодействия между частицами больше сил, формирующих внутреннюю структуру каждой из частиц. Теперь соударение можно определить как такое состояние сблизивпшхся частиц, при котором любое изменение их внутренней структуры — химической или энергетической — обусловлено силами взаимодействия, возникающими между частицами. В результате соударения появляется искривление траектории движения и изменение импульса (если соударение неупруго). Соударение — процесс, протекающий во времени, его началом условно можно считать момент начала искривления траектории, а концом — завершение поворота на угол 0, после чего частица, продолжая инерциальное движение, более не меняет угла своей траектории. Промежуток времени между этими моментами есть время соударения. В течение этого времени [c.50]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    Для псевдоожиженного слоя характерно сложное взаи.чодействие различных сил трения между соседними частицами, движущимися с различными скоростями, статических адгезионных сил взаимодействия между частицами, гравитационных, а также силы лобового сопротивления потоку ожижающего агента. Влияние гравитационных сил и силы лобового сопротивления, действующих на твердые частицы, изучено достаточно хорошо. Роль сил трения, статических адгезионных сил взаимодействия между частицами (т, е. реология) в псевдоожиженном слое изучена слабо число публикаций, посвященных реологическим свойствам псевдоожиженных систе.п, весьма невелико. [c.228]

    По некоторым свойствам к идеальным растворам близки край- не разбавленные растворы в них можно пренебречь взаимодействием между частицами растворенного вещества из-за их раз-общеииости. [c.233]

    Е осредпеиный вектор, имеющий смысл силы взаимодействия между частицами обеих фаз [c.87]

    Развитию гипотезы электролитической диссоциации способствовали работы И. А. Каблукова, Нернста, Джонса и др. Особенно большое значение в формировании правильного представления о взаимодействии между частицами в растворах электролитов имели работы Каблукова. Основываясь в значительной степени на обихей теории растворов Менделеева, он утверждал, что ионы могут вступать во взаимодействие с водой, образуя гидраты переменного состава). Каблуков в своей докторской диссертации (1891) писал По нашему, вода, разлагая частицы растворенного тела, входит с ионами в непрочные соединения, по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекулы галоидов при высокой температуре . Дальнейшее развитие науки полностью подтвердило правильность этого вывода И. А. Каблукова. [c.382]

    Для более правильного понимания механизма химического взаимодействия между частицами коллоидов, которое может происходить при, взаимной коагуляции их, необходимо учесть следующее. Если два вещества, способные химически реагировать между собой, находятся в коллоидном состоянии, то соприкосновение частиц, возникающее при смешении золей и при взаимной коагуляции их, еще недостаточно для возникновения химической реакции, так как сольватные оболочки разделяют частицы. В таких случаях химические реакции между коллоидами происходят через образование истинного раствора. Так, указанная выше реакция между золями кремнезема и глинозема протекает при растворении SiOa. [c.523]


Смотреть страницы где упоминается термин Взаимодействие между частицами: [c.82]    [c.161]    [c.165]    [c.309]    [c.151]    [c.65]    [c.155]    [c.328]    [c.83]    [c.84]   
Смотреть главы в:

Коллоидная химия -> Взаимодействие между частицами




ПОИСК





Смотрите так же термины и статьи:

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте